住宅買買市場의 效率性 分析
- 서울 江南地域 共同住宅買買市場을 중심으로 -

金 寬 永

본 研究의 목적은 株式市場理論에서 개발된 市場의 中強效率假說(semi-strong form of the efficient market hypothesis)을 적용, 서울 강남지역 137개 유형의 아파트에 대한 1983년부터 1988년까지의 分期別 賣買價格資料를 사용하여 住宅買買市場의 效率性을 심층분석하고자 함에 있다. 本 研究의 실증분석결과에 의하면 住宅投資者들이 정부정책의 변화나 아파트 가격에 영향을 주는 公共情報들을 빠른 시일내에 資本化(capitalize)하지 못함으로써 住宅買買市場은 貿易利潤(arbitrage profit)이 상당기간 존재하는 非效率性을 갖고 있는 것으로 나타났다. 이는 주택이라는 財貨의 特性성에도 原因이 있지만 더 중요한 原因으로는 分散性의 住宅需給 不均衡과 公共情報에 대한 資本家들의 異質的 期待(heterogeneous expectation)를 드러낼 수 있다.

I. 序 論

本稿의 目的은 株式市場理論에서 개발된 中強效率假說(semi-strong form of the efficient market hypothesis)을 不動産去來市場, 특히 서울 강남지역의 共同住宅買買市場에 적용하여 실증분석하는 데에 있다. Fama(1970)에 의하면 市場이 中強 效率의이라 함은 市場價值에 영향을 주는 諮詢 公共情報(publicly available information)이 그 자산의 가격에 바로 반영됨을 의미한다. 이 러한 市場의 市場에서 投資者들은 資本市場에 의하여 거래할 때 위험조정 후 非正常報酬(abnormal return on a risk-adjusted basis)를 얻을 수 없다.

이러한 市場의 效率性에 대한 實證 分析은 주로 株式市場을 大象으로 행하여야 한다. 異質 주택이라는 자산이 國富의 不均等 부분을 차지하고 있음을 감안하고 주택이 임상상
활에서 차지하고 있는 비중을 생각하면 주택
매매시장의 효율성에 대한 분석도 필요하다고
할 수 있다.

일반적으로 주택이라는 재산은 물리적(固定
성)과 억지의 다형성을 특징으로 하므로 개별
적인 주택매매행위의 판점에서 보면 주택시장
이 비효율적으로 운영될 확률이 높다고 볼 수
있으나 전체적인 주택매매시장의 효율은 이러
한 자원배분의 이중성을 가지기 때문에 주택
매매시장의 효율성은 주택공급의 안정을 통한
주택문제의 해결과도 직접 연관이 된다.

최근 들어 다시 아파트가격을 중심으로 부
동산가격이 폭등하고 있고 각계각층에서 부동
산투자에 대한 우려가 높아지고 있다. 이에 따
라 정부는 특산품에 대한 구제책 강화, 부동산
투기 및 투기세 대책의 확대 그리고
인정취득권의 실시 등 강력한 부동산투자 억제
구호를 발표하였다. 이러한 추세는 주택매
매시장의 효율성을 때 비로소 정책입각자의
의도대로 신속히 효과를 나타낼 것이다.

본론에서는 이러한 공개정보들이 가격변화에
 얼마나 주택가격 변동성을 가설적으로 약속되는가를
APT(Arbitrage Pricing Theory) 모델로 의거하여 서울 중남부 지역 137개 유형의 아파트에 대
한 1983년부터 1988년까지의 분기별 주택가격
성을 바탕으로 주택매매시장의 효율성에 대해
분석하고 주택시장의 효율을 오지 못하
는 원인을 파악하였다. 第Ⅱ章에서는 APT 모
델을 제시하고 주택매매시장의 효율성에 관해 논의
한 다음, 第Ⅲ章에서는 상기한 메가가격_KP로를
근거로 실증분석을 하였다.

Ⅱ. 모델의 定立

주택매매시장은 일반적으로 고도로 분산된
정보들에 의해 작동하는 것으로 특징이지만, 즉,
매매시장내에서 주택을 판매하는 사람과 구매하
려는 사람들이 각각 그들 나름으로 주택가격
을 평가하고 있다. 때문에 주택매매시장은 주
식시장보다는 상대적으로 개별투자자들 사이에
혹은 각 개인투자자들 한때에도 여러 투자
대상 주택 사이에 투자액이 큰 가격가격의
 것에 있다. 이러한 주택매매시장에서의 큰
가격가격의 효과로 말미암아 우리는 주식시장과는
달리 주택매매시장이 높은 수준의 일 것이라고
생각할 수 있다. 다시 말해서 주택의 메가가격은
시장내의 모든 가능한 정보들을 반영하지 못
하므로 APT 모델(αt + βtRm + εt)
가 존재
할 수가 있다는 것이다. 이러한 주택시장의
효율성을 분석하기 위한 모델은 주식시장에서
 먼저 개발되어 왔는데 가장 대표적인 모델이
Lintner(1965)와 Sharpe(1964) 등에 의해 시
작한 CAPM(Capital Asset Pricing Model)
이다. CAPM에서는 주식의 가격동향의
학과 같은 단수요인모델(one factor model,
식(1)) 또는 두수요인모델(two factor model,
식(2))으로 표현된다.

\[R_i = \alpha_i + \beta_i R_m + \epsilon_i \quad (t=1, 2, ..., N) \]

\[R_i - R_F = \beta_i (R_m - R_F) + \epsilon_i \quad (t=1, 2, ..., N) \]

\[R_t : \text{資産 i에 대한期待報酬} \\ \text{(expected return)} \]
\(R_m \) : 市場포트폴리오에 대한 期待報酬
\(R_i \) : 無危險資産 (risk-free asset)에 대한 期待報酬
\(\beta_i \) : 資産 \(i \)의 危險負擔 (risk premium)
\(\epsilon_i \) : 險亂項

이 模型에 따르면 資産에 대한 期待報酬 가 同 資産과 市場포트폴리오 사이의 危險負擔 關係에서 設定된다. 즉, 資産 \(i \)의 危險負擔 程度를 나타내는 \(\beta_i \)는 市場포트폴리오에 대한 報酬 (return)과 資産 \(i \)에 대한 報酬 사이의 共分散 (covariance) 關係を 반영한다. 이 CAPM은 주택매매시장의 效率性 분석에 작용한 Linneman (1984)은 公共情報가 住宅価格 腾落과 有意한 相関關係를 가지나 截定利潤機會 (arbitrage profit opportunity)는 存在하지 않으며 그 이유는 주택매매에는 상당액의 去來費用 (transaction costs)이 들기 때문에 라고 결론짓고 따라서 CAPM은 住宅買買市場 의 效率性 分析에 적합하지 않음을 面혀하였다. 이 밖에도 CAPM은 부동산, 特히 주택매매 시장의 特定성에 그 적용이 限定되어 있는데 그 첫째 이유로는 주택매매시장에서의 市場포트폴리오를 積合할 수 없으므로 實證分析이 어 립고, 둘째로는 Draper-Findlay (1982)가 주장 하였듯이 分散投資 (diversification)를 어려게 하는 士用와 소비의 二重目的性, 복잡한 稅制 關係 등이다.

CAPM이 가지는 많은 制約條件을 다소 완 화시켜서 보완이 된 資產價格決定模型이 Ross (1978)에 의하여 제시된 APT (Arbitrage Pricing Theory)이다. APT模型에 따르면 資産의 報酬가 모든 자산에 공통적인 \(k \)개의 要 因들 (\(k \) common factors)에 의해 결정되므로 시장의 不動産市場의 效率性 分析에 CAPM보다 APT가 더 적합한 이론이 라 하였다. APT는 기본적으로 3개의 가정 위 에 기초하는데, 첫째는 자본시장의 完全競爭性 이고, 둘째는 投資者들이 확실성을 갖는 좀 더 많은 富 (more wealth with certainty)를 선 호한다는 것이고, 꼭으로 資産的 報酬 또는 가 격을 결정하는 推計過程 (stochastic process) 이 다음과 같은 形態의 \(k \)-因子模型으로 나타낼 수 있다는 것이다.

\[
\tilde{r}_i = R_i + \beta_i \tilde{s} + \epsilon_i \quad i = 1, 2, ..., N \quad \text{(3)}
\]

\[
\tilde{r}_i : \text{資産 } i \text{에 대한 任意報酬 (random return)}
\]

\[
R_i : \text{資産 } i \text{에 대한 期待報酬}
\]

\[
\tilde{s} : \text{共通要因 (common factor)}
\]

\[
\beta_i : \text{資産 } i \text{의 報酬에 영향을 주는 평균값이 0인 共通要因 (common factor)}
\]

\[
\epsilon_i : \text{個定에 의하여 검증된 포트폴리오 안 에서 완전히 분산될 수 있는, 즉 평균 값이 0인 資産 } i \text{의 報酬에 대한 非構造의 (unsystematic) 혹은 特異한 (idiosyncratic) 難亂項}
\]

共通要因 \(\tilde{s} \)들은 구조적 위험을 표시하는 반 면에 \(\epsilon \)들은 個別 위험을 표시하는 데, \(\epsilon \)들은 資産 \(i \)에만 작용하는 純粹적 報酬를 표시하며 이들은 다음과 같은 特性을 지 니다고 가정한 한다.

\[
E(\tilde{s}) = 0 \quad \text{for all } k
\]

\[
E(\epsilon) = 0 \quad \text{for all } i, k
\]

\[
\text{cov}(\epsilon_i, \epsilon_j) = 0 \quad \text{for all } i \neq j
\]

APT의 기본원리는 均衡에서 截定利潤이 存재하지 않는다는 것이므로 均衡關係는 市場 시장의 危險資産에 対する equilibrium을 형성함으로써 갖을 수 있다. 資産投資과 無危險資産 (a zero net investment and no risk)으로 만든 포트폴리
오이다. 이에 저정된 두 가지의 의미는 분석의 핵심인데 다시 말해 APT 모델의 구성 요소의 구조가 또한 효율적인 광의에서 전부 하여는 수의 포트폴리오들이 대체가 될 수 있는 close substitutes)가이며 같은 가치를 지니게 된다. APT 모델에서의 공정요인은 다음과 같은 가정하에서 수의 구조적 위험, 주로 경제관람(GNP, 물가, 이자율 등)과 관계가 있다고 할 수 있으나 APT 모델은 실증분석하는 데에 공통요인이 정확히 무엇인지 식별하기 어려운 단점이 있다. 이러한 APT 모델에서 공정 요인에 대한 공정적 벨추는 다음과 같이 표현된다. 2)

\[R_t = \alpha + \lambda_1 b_{1t} + \ldots + \lambda_k b_{kt} \]

여기서 \(R_t \)는 무형의 가격, 즉 \(b_{1t} = b_{2t} = b_{kt} = 0 \)인 자산에 대한 공정적 벨추로 볼 수 있으며, \(\lambda_1, \ldots, \lambda_k \)은 공정적 가중의 set(\(\alpha \))인 공정적 가중의 set(\(\alpha \))으로 해석된다. \(b_{kt} \)는 공정적 가중의 set(\(\alpha \))으로 해석된다.

1) APT 모델의 개인적인 장점을는 Roll(1977) 참조.
2) APT 모델의 개인적인 장점을는 Roll(1977) 참조.
3) APT 모델의 개인적인 장점을는 Roll(1977) 참조.
4) APT 모델의 개인적인 장점을는 Roll(1977) 참조.
5) APT 모델의 개인적인 장점을는 Roll(1977) 참조.

1 APT 모델의 개인적인 장점을는 Roll(1977) 참조.
2 APT 모델의 개인적인 장점을는 Roll(1977) 참조.
3 APT 모델의 개인적인 장점을는 Roll(1977) 참조.
4 APT 모델의 개인적인 장점을는 Roll(1977) 참조.
5 APT 모델의 개인적인 장점을는 Roll(1977) 참조.
수치의 증가율 (LRP)과 특성감안 분양면적 평당가격의 로그수치 (LHP)가 사용되었다.

10개의 아파트포트폴리오의 수익변환에 대한
이론적 분석에서 나타난 固有值 (eigenvalue)가
表 1에 나타나 있다. 이에서 보는 바와 같이
이 아파트 수익률의 분산 중 17개로, 이에는
에 의해 설명되는 비중은 50% 정도이며 제2, 제3의
4개의 95%의 有意水準에서 기각하지 못하는
表 1》 因子 固有值 (factor eigenvalues)

<table>
<thead>
<tr>
<th>因子</th>
<th>固有值</th>
<th>分散寄與度</th>
<th>累積分散寄與度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.724</td>
<td>0.466</td>
<td>0.466</td>
</tr>
<tr>
<td>2</td>
<td>14.849</td>
<td>0.292</td>
<td>0.758</td>
</tr>
<tr>
<td>3</td>
<td>7.590</td>
<td>0.149</td>
<td>0.907</td>
</tr>
<tr>
<td>4</td>
<td>4.039</td>
<td>0.079</td>
<td>0.986</td>
</tr>
<tr>
<td>5</td>
<td>0.685</td>
<td>0.014</td>
<td>1.000</td>
</tr>
</tbody>
</table>

LRP

1	31.992	0.503	0.503
2	12.664	0.199	0.703
3	7.457	0.117	0.820
4	6.785	0.107	0.927
5	4.672	0.074	1.000

表 2》 因子分析結果에 대한 檢證

(1) \(H_0 : \) 共通因子 存在

vs \(H_a : \) 奇数 2개 이상의 共通因子 存在

\[
\begin{array}{c|c|c}
\text{表 } & \text{LRP} & \text{LHP} \\
\hline
\chi^2 & 24.448 & 32.634 \\
\text{自由度} & 21 & 21 \\
\text{結果(95% 有意水準)} & H_0\text{기각} & H_0\text{기각} \\
\end{array}
\]

(2) \(H_0 : \) 4개 (LHP의 경우 5개)의 共通因子

vs \(H_a : \) 共通因子 存在

\[
\begin{array}{c|c|c}
\text{表 } & \text{LRP} & \text{LHP} \\
\hline
\chi^2 & 0.698 & 1.212 \\
\text{自由度} & 17 & 16 \\
\text{結果(95% 有意水準)} & H_0과 허락 & H_0과 허락 \\
\end{array}
\]

6) 주택문제를 다름에 있어서 特性勘案価格 (hedonic price of a house)을 사용하는 데, 特性감안가격이란 주택이라는 買賣가 가지, 크기, 위치, 성, 주변환경, 주변에 어업에 의해 그 가치가 달라지므로 유의적인 이전을 기각할 가능성이 있다. 이는 관성, 消費財물의 본질에 매우 큰 측정 방법으로 이로서는 주택가격을 각 주택유형이 가지는 특성, 즉 분양면적, 분양면적의 전용면적의 점수에 비중, 교통편리도, 학교 등과의 獨立變數로 하는 通常最小自乗法 (ordinary least squares)으로 추정한 후 그 預測值 (predicted value)를 特性勘案価格으로 사용하려고 한다. 각 단도별 特性감안가격 추정식은 부록에 나타나 있다.

55
Ⅲ. 實證分析

1. 非正常收益의 計算

住宅買賣市場의 效率性을 분석하기 위해서는 우선 住宅投資가 가지는 非正常收益(abnormal return)을 계산하여 한다. 非正常收益이라 함은 주택투자에 따른 수익에서 同級風險水準의 資産에 대한 正常의 收益을 제한 나머지 投資收益(residual investment returns)을 말한다. 여기서 동급위험수준의 자산에 대한 정상적인 보수율 資産價格 決定模型인 APT模型이 예측하는 風險調整收益率 을 말한다. 本稿에서는 前節에서 밝힌 대로 LRP의 경우에는 4因子 APT模型, 그리고 LHP의 경우에는 5因子 APT模型을 동급위험수준의 아파트를 식별하기 위해서 사용하였다. 즉 137개 유형의 표본에서 4因子 또는 5因子들에 결친 아파트가격변화로부터 危險等級(risk class)을 구분하였다. 위험등급을 가리기 위한 統計技法으로는 클러스터分析(cluster analysis)이 사용되었지만 이 통계기법은 유클리다안 距離 함수(Euclidian distance function)를 통해 측정된 觀測値의 값의 유사성에 기초하여 전체 관측치들을 소수의 상호 배타적인 그룹으로 분류하는 데 쓰이는 기법이다. 우선 137개 유형의 아파트투자수익에 대해 LRP의 경우에는 4因子 次元(4 factor dimension)에 걸쳐 因子點數(factor score)를 계산하고 이 인자점수를 이용하여 SAS프로그램의 클러스터分析法(PROC FASTCLUS)으로 각각의 관측치를 분류하였다。

상기의 클러스터分析을 3〜10개의 클러스터 數別로 행하였는데 가장 적합한 클러스터의 수를 결정하기 위한 기준으로는 SAS프로그램에 내장된 3緊 클러스터 선정기준(cubic clustering criterion)과 Friedman and Rubin (1967)의 각각의 클러스터水準에서의 $n \log(|T|/|W|)$의 변화량을 사용하였다. 3緊 클러스터 선정기준은 기존의 최대값이 되는 클러스터 수준이 最適數가 되고 Friedman 과 Rubin의 선정기준은 $n \log(|T|/|W|)$의 변화가 가장 크게 나타날 때의 클러스터水準을 채택할 것을 권고하고 있다. 〈표 3〉에서 보는 바와 같이 LRP의 경우는 두 기준 모두 7 단계 수준의 클러스터, LHP의 경우는 8단계 수준의 클러스터, 다시 말해서 同級風險을 가진 아파트그룹을 각각 7개 내지 8개로 분류하였다.

각각의 아파트類型에 대해 同級風險水準(equivalent risk class)을 식별한 다음 단계는 APT模型에 의한 危險調整收益率을 구하는
표 3 클러스터 선택기준

<table>
<thead>
<tr>
<th>클러스터의 수</th>
<th>n log</th>
<th>변화량</th>
<th>3그룹 클러스터 선택기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.4846</td>
<td>-</td>
<td>-2.521</td>
</tr>
<tr>
<td>4</td>
<td>0.9028</td>
<td>0.4182</td>
<td>-4.347</td>
</tr>
<tr>
<td>5</td>
<td>0.3156</td>
<td>0.4228</td>
<td>-8.155</td>
</tr>
<tr>
<td>6</td>
<td>2.0502</td>
<td>0.7346</td>
<td>-2.508</td>
</tr>
<tr>
<td>7</td>
<td>2.9479</td>
<td>0.8977</td>
<td>-1.597</td>
</tr>
<tr>
<td>8</td>
<td>3.6445</td>
<td>0.6966</td>
<td>-2.477</td>
</tr>
<tr>
<td>9</td>
<td>4.5140</td>
<td>0.8695</td>
<td>-2.508</td>
</tr>
<tr>
<td>10</td>
<td>5.1258</td>
<td>0.6118</td>
<td>-2.597</td>
</tr>
</tbody>
</table>

LHP

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.5313</td>
<td>-</td>
<td>-7.653</td>
</tr>
<tr>
<td>4</td>
<td>0.9768</td>
<td>0.4455</td>
<td>-10.434</td>
</tr>
<tr>
<td>5</td>
<td>1.8832</td>
<td>0.9064</td>
<td>-6.223</td>
</tr>
<tr>
<td>6</td>
<td>2.3360</td>
<td>0.4528</td>
<td>-8.079</td>
</tr>
<tr>
<td>7</td>
<td>3.5429</td>
<td>1.2069</td>
<td>-4.654</td>
</tr>
<tr>
<td>8</td>
<td>4.8528</td>
<td>1.3099</td>
<td>-2.036</td>
</tr>
<tr>
<td>9</td>
<td>5.7564</td>
<td>0.9036</td>
<td>-2.326</td>
</tr>
<tr>
<td>10</td>
<td>6.3545</td>
<td>0.5981</td>
<td>-4.027</td>
</tr>
</tbody>
</table>

것이다. 위험요인수익률은 식 (4)에 의거하여 우선 R_{it}를 각각 4개의 요인 중의 순 순위에 해당하는 순 위순위로 변경한 다음 회귀분석을 통해 계산한 5개의 요인의 결정에 영향을 미치는 요인 중 하나로 여겨진 5개의 요인의 유의성을 검정하기 위하여 클러스터 내에서 평균값 $\overline{R_{it}}$을 구하여 그 평균값을 위험조정수익률로 사용하였다. 다음 단계로는 익절 후 평균수익률이 동일한 섬유에 대한 평균수익률을 계산할 수 밖에 없으나, 이는 위험요인수익률 중에서 가장 높은 요인을 선택한 것으로, 이는 단계별로 작성된 5개의 요인의 순위에 따라 클러스터 내에서 평균수익률을 계산하여 평균수익률을 정의하였다.

$$ABR_{it} = R_{it} - \overline{R_{it}}$$

각각의 클러스터의 평균수익률은 APT모형에 의해 주어진 동급워는 수준을 제한적으로 어느 정도 생산요인수익률의 상한선을 제한할 수 있다.

2. 住宅資産市場의 效率性

본 항에서는 두 가지 형태의 공공정보에 따른 개의 항목의 수익률이 검토되었다. 1980년대 초반에는 70년대 말의 제2차 오일쇼크와 80년대 초반의 경제성장에 따른 저가의 집가격 상승도 경제성장에 따라 반영되어 1983년 들어 신규분양 아파트를 중심으로 다시 살아나기 시작하였다. 이에 따라 1983년 5월부터 민간아파트 분양가격의 실제화를 위해 1983년 7월에는 주택에 대한 10%의 고가세를 강화하는 등의 정책을 실시하였다. 이러한 정책의 한계점을 파악하기 위해서는 아파트가격에 대한 정부정책의 영향을 좌우하는 아파트가격에 따른 수익을 감소시키게 된다. 이 경우, 만약 아파트매매시장이 효율적이라면 이러한 정책의 효과는 즉시 매매가격에 반영되어야 한다. 정부정책의 효과가 반영되지 않거나 반영되지 않는 것은 정부정책의 변화라는 공공정보가 아파트매매시장에 직접적으로 반영되어야 한다는 것이다. 이를 위해 본 연구에서는 정부정책의 변화를 반영하려는 Public Information와 시장에서의 수익의 수익을 저감할 수 있는 APT모형을 이용한 방법만으로도 가능하다. 그러나 (표 4)에서 보는

11) 債券入社制是 본격적으로 실시된 시기는 1983년도 하반기(주로 9월 이후)부터이다.
<table>
<thead>
<tr>
<th>t</th>
<th>LRP</th>
<th></th>
<th>LHP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AR</td>
<td>CAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984 1/4</td>
<td>-0.023</td>
<td>-0.0238</td>
<td>-0.0249</td>
<td>-0.0249</td>
</tr>
<tr>
<td>2/4</td>
<td>-0.0109</td>
<td>-0.0347</td>
<td>-0.0119</td>
<td>-0.0368</td>
</tr>
<tr>
<td>3/4</td>
<td>-0.0092</td>
<td>-0.0439</td>
<td>-0.0102</td>
<td>-0.0470</td>
</tr>
<tr>
<td>4/4</td>
<td>-0.0099</td>
<td>-0.0538</td>
<td>-0.0105</td>
<td>-0.0579</td>
</tr>
<tr>
<td>1985 1/4</td>
<td>0.0118</td>
<td></td>
<td>0.0118</td>
<td></td>
</tr>
<tr>
<td>2/4</td>
<td>-0.0073</td>
<td>-0.0073</td>
<td>-0.0073</td>
<td>-0.0073</td>
</tr>
<tr>
<td>3/4</td>
<td>-0.0074</td>
<td>-0.0147</td>
<td>-0.0075</td>
<td>-0.0148</td>
</tr>
<tr>
<td>4/4</td>
<td>0.0024</td>
<td></td>
<td>0.0023</td>
<td></td>
</tr>
<tr>
<td>1986 1/4</td>
<td>-0.0049</td>
<td></td>
<td>-0.0048</td>
<td></td>
</tr>
<tr>
<td>2/4</td>
<td>-0.0002</td>
<td></td>
<td>-0.0001</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>0.0029</td>
<td></td>
<td>0.0030</td>
<td></td>
</tr>
<tr>
<td>4/4</td>
<td>0.0055</td>
<td></td>
<td>0.0056</td>
<td></td>
</tr>
<tr>
<td>1987 1/4</td>
<td>0.0066</td>
<td></td>
<td>0.0068</td>
<td></td>
</tr>
<tr>
<td>2/4</td>
<td>0.0091</td>
<td></td>
<td>0.0093</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>0.0067</td>
<td></td>
<td>0.0069</td>
<td></td>
</tr>
<tr>
<td>4/4</td>
<td>0.0312</td>
<td>0.0312</td>
<td>0.0314*</td>
<td>0.0314</td>
</tr>
<tr>
<td>1988 1/4</td>
<td>0.0490</td>
<td>0.0802</td>
<td>0.0415*</td>
<td>0.0729</td>
</tr>
<tr>
<td>2/4</td>
<td>0.0183</td>
<td>0.0985</td>
<td>0.0109*</td>
<td>0.0838</td>
</tr>
</tbody>
</table>

* 95%有意水準에서 0보다 작거나 동(one-tailed test).

AR: 非正常收益
CAR: 累積非正常收益

비와 같이 137개 유형의 서울강남지역 아파트
投資に関する 非正常收益이 1984년도 4/4분기
까지 95%有意水準에서 0보다 적은 것으로
 나타났다.

물론 非正常收益의 절대값이 기간이 지날수
록 줄어들기는 하였지만 1983년도의 政府施策
이 1984년 4/4분기까지 통계적으로 有意한 負
의 效果를 가져왔다는 것은 서울지역의 아파
트매매시장이 Fama가 정의한 中強效率性을
갖고 있지 않음을 의미한다. 이는 다시 말해서
정부의 시책이 발표된 이후 이 시책에 대한
효과가 가격변화로 즉각 반영되지 않기 때문
에 투자에 따른 裁定利潤의 機會(arbitrage
profit opportunity)가 상당히 존재함을 의미
한다. 이러한 현상은 1985년에 다시 나타나는
데 1985년 2/4분기와 3/4분기에도 통계적으로
有意한 負의 非正常收益을 시현하였다. 이는
不動産投機을 抑制하기 위하여 1985년 4월 土
地去來許可制를 서울을 비롯한 3개 대도시지
역에 실시한 데 대한 영향으로 분석된다. 물론
土地去來허가제가 아파트매매에 직접적인 관
련은 없지만 投機抑制策이란 점에서 心理的
效果가 작용하였다고 판단되며 이때의 負의
非正常收益은 앞서의 최적적인 住宅政策의 變
化 경우보다 적게 나타났으며 그 파급기간도 2
分기로 줄어 소진되었다. 이후 1987년 2/4분기
까지의 非正常收益은 95%有意水準에서 0과
 다르지 않은 것으로 나타났는바 이는 동 기간
중 아파트매매가격에 큰 영향을 준 政府施策
이 없었기 때문인 것으로 보이된다.

본稿에서 검토한 두번째 형태의 公共情報
是的 非正常收益을 가져다 주려고 예상되는
1987년도의 6.29선언 이후 정부의 각종 規制緩
和, 특히 아파트가격의 상승을 촉진시키는 아
파트분양가격의 上限検 定引上げ 및 住宅景氣浮揚
策이다. 1987년 3/4분기중 이러한 일련의 시책
들은 選挙資金의 放出로 흥부해진 市中資金事
情과 더불어 많은 投資者들로 하여금 아파트
가격 상승에 대한 期待(anticipation)를 일으
켰다. 그러나〈表 4〉에서와 같이 상기 公共情報
에 대한 效果도 단기간에 가격에 反映
(capitalize)되지 않고 1988년 2/4분기까지도
통계적으로 有意한 正의 非正常收益이 계속되
었다. 물론 이 경우도 公共情報에 따른 正의
效果 중 상당한 부분이 잔존했으며, 즉 1987년 4/4
분기와 1988년 1/4분기에 걸쳐 반영되었으나
1988년 2/4분기에도 통계적으로 有意한 正의

58
非正常収益을 시현하였고 3분기에 걸친 累積
非正常収益을 살펴보아도 LRP와 LHP의 경
우 모두 10%에 달함으로써 아파트매매시장이
앞서 정의한 의미에서의 效率性을 보이지 못
하고 있다.

IV. 結 論

本稿는 두가지 형태의 公共情報에 대한住
宅買買市場の中強效率性에 대해 서울특별시
강남지역의 아파트를 중심으로 실증분석하였
다. 결론적으로 投資者들은 政府政策的 変化
나 아파트가격에 영향을 주는 公共情報들을
따른 시절내에 資産化(capitalize)하지 못함
으로써 주택매매시장은 裁定利潤(arbitrage
profit)이 상당기간 존재하는 非效率性을 갖
고 있는 것으로 나타났다. 물론 資料的 測定問
題(measurement problem)와 APT模型의 適
合性問題는 本稿에서는 깊이 고려되지 않았으
므로 本稿의 結論은 정적적이라 할 수 있으며
 좀더 많은 지역에 대한 자료, 좀더 연장된 기
간에 대한 資料補完이 있을 경우에 확인되려
라 생각된다.

이처럼 우리나라의 住宅買買市場이 비효율적
으로 운영되고 있는 원인은 여러가지가 언
급될 수 있으나 그 중에서도 다음 세가지를
내세울 수 있다.

첫째는, 投資와 消費의 二重目的性을 지니는
주택이라는 貨貨의 特性이다. 예를 들어 住宅
価格에 負의 效果를 가져오는 公共情報가 존
재할 경우 주택보유자들은 投資보다는 消費目
的에 치중함으로써 이 정보를 資産化하지 않
아 공공정보에 의한 住宅価格에의 彼及效果가
천천히 나타나게 한다.

둘째는, 우리나라 주택시장의 기본적인 문제
인 만성적인 住宅需給의 不均衡現象이다. 만
성적인 需要超過現象에 있는 住宅買買市場에
의한 效果를 가져오는 公共情報가 나타날 경
우 이 정보가 주택가격에 반영되는 속도가 超
過需要(excess demand)의 존재 때문에 늦추
어지는 것이다. 다시 말해서 주택가격은 우선
적으로 需給不均衡에 의하여 결정되고 이미 초
과수요가 존재하고 있는 상황에서 公共情報에
의한需要이 增加 내지는 買買市場의 賣物減
少는 한계적인 효과만을 가져온다고 볼 수 있
다.

결로 중요한 원인은 公共情報에 대한 投
資者들의 異質的인 期待感(heterogeneous
expectation)이다. 이는 과거의 예로 보아 정
부가 投機抑制를 위한 제반사슬을 발표한 후
투기가 마르진 정정되면서 시장을 늘추거나 혹은
浮揚策을 발표, 다시 투기시장의 정 政府政策
의 一貫성이 마르지 않아 政府政策에 대한 信頼度(credibility)가 떨어져 새롭게 나온 시장의 효과에 대
해 주택보유자 혹은 주택투자자들은 다양하고
도 이질적인 기대를 하게 되는데 이러한 異質
의 期待로 인하여 公共情報가 가격에 반영되
는 속도(speed of adjustment)가 상당히 늦
추어질 수 있는 것이다.
參考文獻

_____, and Carol L. Fall, "The United States Market Wealth Portfolio", The Journal of Portfolio Management, Fall 1979, pp.82～92.

Milligan, Glenn W. & Martha C. Cooper, "An Examination of Procedures for Determining the Number of Clusters in a Data Set", The Ohio State University CAS Working Paper Series 83-51, August 1983.

Reinganum, M.R., "The Arbitrage Pricing Theory: Some Empirical Results", 60

附錄：特性勘案 住宅價格 推定式

\[LP \ 83 = 3.200** + 0.006 \text{SIZEA}** \\
(0.606) \ (0.001) \]
\[+ 0.177 \text{RATIO} + 0.019 \text{MOVEIN}** \\
(0.195) \ (0.006) \]
\[+ 0.009 \text{SHOP} - 0.016 \text{TRAFFIC} \\
(0.022) \ (0.041) \]
\[+ 0.112 \text{AREA} 1 + 0.244 \text{AREA} 2** \\
(0.084) \ (0.095) \]
\[+ 0.076 \text{AREA} 3 \\
(0.092) \]

\[R^2 = 0.571 \quad \text{Adjusted } R^2 = 0.544 \]
\[F = 21.259** \]

\[LP \ 84 = 2.591** + 0.004 \text{SIZEA}** \\
(0.605) \ (0.001) \]
\[+ 0.652 \text{RATIO}** + 0.023 \text{MOVEIN}** \\
(0.195) \ (0.006) \]
\[+ 0.004 \text{SHOP} - 0.011 \text{TRAFFIC} \\
(0.022) \ (0.040) \]
\[+ 0.180 \text{AREA} 1** + 0.309 \text{AREA} 2** \\
(0.084) \ (0.095) \]
\[+ 0.150 \text{AREA} 3 \\
(0.092) \]

\[R^2 = 0.559 \quad \text{Adjusted } R^2 = 0.532 \]
\[F = 20.315** \]

\[LP \ 85 = 1.183** + 0.003 \text{SIZEA}** \\
(0.583) \ (0.001) \]
\[+ 1.057 \text{RATIO}** + 0.035 \text{MOVEIN}** \\
(0.188) \ (0.006) \]
\[+ 0.037 \text{SHOP} - 0.010 \text{TRAFFIC} \\
(0.022) \ (0.039) \]
\[+ 0.246 \text{AREA} 1** + 0.399 \text{AREA} 2** \\
(0.081) \ (0.091) \]
\[+ 0.101 \text{AREA} 3 \\
(0.089) \]

\[R^2 = 0.596 \quad \text{Adjusted } R^2 = 0.571 \]
\[F = 23.585** \]

\[LP \ 86 = 1.779** + 0.003 \text{SIZEA}** \\
(0.549) \ (0.001) \]
\[+ 0.914 \text{RATIO}** + 0.029 \text{MOVEIN}** \\
(0.177) \ (0.006) \]
\[- 0.010 \text{SHOP} + 0.030 \text{TRAFFIC} \\
(0.020) \ (0.037) \]
\[+ 0.205 \text{AREA} 1** + 0.354 \text{AREA} 2** \\
(0.076) \ (0.086) \]
\[+ 0.126 \text{AREA} 3 \\
(0.084) \]

\[R^2 = 0.622 \quad \text{Adjusted } R^2 = 0.599 \]
\[F = 26.352** \]

\[LP \ 87 = 1.751** + 0.003 \text{SIZEA}** \\
(0.582) \ (0.001) \]
\[+ 1.905 \text{RATIO}** + 0.029 \text{MOVEIN}** \\
(0.188) \ (0.006) \]
\[- 0.058 \text{SHOP}** + 0.055 \text{TRAFFIC} \\
(0.022) \ (0.039) \]
\[+ 0.060 \text{AREA} 1 + 0.299 \text{AREA} 2** \\
(0.081) \ (0.091) \]
\[+ 0.164 \text{AREA} 3 \\
(0.089) \]

\[R^2 = 0.643 \quad \text{Adjusted } R^2 = 0.621 \]
\[F = 28.806** \]

\[LP \ 88 = 2.164** + 0.004 \text{SIZEA}** + 1.452 \text{RATIO}** \\
(0.477) \ (0.001) \ (0.154) \]
\[+ 0.023 \text{MOVEIN}** - 0.069 \text{SHOP}** \\
(0.005) \ (0.018) \]
\[+ 0.068 \text{TRAFFIC}** - 0.130 \text{AREA} 1* \\
(0.032) \ (0.066) \]
\[+ 0.288 \text{AREA} 2** + 0.209 \text{AREA} 3** \\
(0.075) \ (0.073) \]

\[R^2 = 0.807 \quad \text{Adjusted } R^2 = 0.795 \]
\[F = 66.859** \]

**：95％有意水準です。有意です。
*：90％有意水準です。有意です。

変数定義

LP 83-LP 88: 面積に関与する要因
SIZEA: 面積
RATIO: 價格/面積
MOVEIN: 新築
SHOP: 町丁内 付近の施設の利用の度合い

62
접 소형센터 및 백화점까지의 거리로 지수가 낮음수록 편의도는 증가

TRAFFIC : 교통 편의도. 도심에 이르는 소요시간으로 측정. 지수가 낮음수록 편의도는 증가

AREA 1 : 가변수. 반포지역일 경우는 1, 기타지역일 경우는 0

AREA 2 : 가변수. 압구정지역일 경우는 1, 기타지역일 경우는 0

AREA 3 : 가변수. 역삼, 도곡지역일 경우는 1, 기타지역일 경우는 0