電氣料金 變動的
國民經濟的 效果 分析

韓 震 熙（本院 專門研究員）
劉 時 庸（本院 主任研究員）
우리나라에서 전기요금은 공공요금으로서 정부의 정책의지에 의하여 크게 영향을 받아왔다. 또한 전기요금수준 조정시 규제당국의 주된 관심은 요금인상이 국민경제에 미치는 영향, 특히 물가 및 무역수지에 미치는 영향에 있었다고 할 수 있다. 이러한 상황에서 전기요금변동의 국민경제적 영향에 대한 신뢰할 수 있는 분석결과는 올바른 정책수립에 필수적이라고 할 수 있다. 본고는 계산가능한 일반균형모형(Computable General Equilibrium model)을 이용하여 1993년도의 산업연관표를 토대로 전기요금의 인상이 물가, 수출입 등 거시변수에 미치는 효과 및 산업부문별 효과를 살펴본 것이다.

전기요금인상이 물가에 미치는 영향은 간단히 '전기요금인상률 × 물가가중치'라는 공식으로 계산해낼 수 있다. 이에 따르면 전기의 소비자물가 가중치가 14/1,000이므로 전기요금인상률이 4%일 때 소비자물가상승률은 약 0.056%가 된다. 그러나 전기요전산업의 중간투입료로 사용되므로 전기요금인상은 전산업 산출물의 가격상승을 유발하고 다시 투입-산출관계에 의하여 추가적인 물가상승을 불러일으키게 된다. 이러한 일반균형적 효과를 모두 고려하여, 본 연구에서 계산한 소비자물가상승률은 0.083%로서 위 수치의 약 1.5배이다. 또한 본고에서는 전기요금인상에 따라 수출과 수입 모두 감소한다. 수출가조달가 수입감소율보다 크게 나타났다. 이러한 결과는 전기요금인상에 따라 전기수요가 감소하여 에너지수입이 감소하고, 그로 인해 무역수지가 개선되려는 일부의 주장과는 매우 대조적이다. 산업별로는 전기요금인상에 따라 서비스업의 가격상승이 두드러지는 것으로 나타났는데, 이는 서비스업부문의 국내재와 수입재간의 대체가능성이 타부문에 비하여 크게 낮은 데 기인한 것으로 보인다. 본고의 결과를 전기요금이 인상되어서는 안 된다고 해석하는 것은 오류일 수 있다. 전기요금인상의 타당성은 전력산업에 대한 종합적인 미시적 분석에 기초하여야 한다.
I. 서론

본 연구에서는 de Melo and Tarr (1992) 류의 투입-산출관계를 고려한 소규모 개방경제 CGE (Computable General Equilibrium) 모형을 이용하여 전기요금의 인상이 국민경제에 미치는 영향을 정량적으로 분석해본다. 전기는 거의 모든 산업에서 중간투입물로 사용되고 있으며 그 속성상 단기간 내에 다른 중간투입물을 대체하기가 불가능하기 때문에, 전기가격의 변동은 경제 전반에 걸쳐 광범위한 파급효과를 불러일으킬 것으로 예상할 수 있다. 또한 각 산업별 전력투입계수 및 중간투입비율이 상이하므로, 전기가격인상이 각 산업에 미치는 직접적인 효과는 산업별로 상이 하리라고 점차할 수 있다. 따라서 본고에서는 전기요금인상이 국민총생산, 물가, 무역수지 등 주요 거시변수들에 미치는 영향뿐 아니라 개별 산업의 생산, 생산물 가격, 수출입에 미치는 영향도 함께 분석해본다.

이와 같이 CGE 모형을 이용한 모의정책실험의 유용성은 두말할 필요 없이 정책변화로 인한 일반균형적 파급효과를 미리 살펴볼 수 있다는 점인데, 이러한 일반균형적 접근방법의 장점은 우리나라의 전기요금 인상절차 및 요금인상의 효과에 관한 기존의 논의와 관련하여 재강조될 필요가 있다고 여겨진다.

그동안 전기가격은 공공요금으로서 정부의 정책의지에 의하여 크게 영향을 받아왔으며, 이에 따라 전기가격의 변동은 전기회사와 관련정책당국의 협상의 결과로서 이루어졌다고 보아도 무방할 것이다. 이러한 상황에서, 규제된 가격이 독점공기업에 대한
적절한 규제수준이 아닌가 하는 문제와는 별개로, 전기요금을 인상하였을 때 물가, 무역수지, 그리고 각 산업에 미치는 효과는 어떠한가 하는 문제가 정책당국자의 또 하나의 관심이었다고 볼 수 있다. 1) 과거의 예를 보면 전기요금인상시, 예를 들어 소비자 물가에 대한 영향은 ‘전기요금인상률 X 물가가중치’ 만큼 나타나는 것으로 흔히 인식되어온 것으로 보인다. 그러나 만일 이 수치가 전기요금인상의 물가에 대한 영향을 과소 혹은 과대평가하고 있다면, 이는 이러한 정책당국의 의사결정과정에 타당한 여부를 떠나서 의사결정을 왜곡시킬 수도 있을 것이다. 또 다른 예로서 세간에서는 전기요금을 인상하면 우리나라의 에너지 수입이 줄어들어 무역수지가 개선될 것이라는 것이 거의 상식화되어 있는 것을 볼 수 있는데, 이러한 믿음은 전기요금인상에 따라 수요가 감소하면 그만큼 전력생산이 줄어들고 이에 따라 전력생산을 위한 에너지수입이 감소될 것이라는 논리에 바탕을 둔 것으로 보인다.

그러나 전기요금의 인상시 경제의 일반적인 반응을 고려하여 종합적인 효과를 정량적으로 분석해보았을 때 그 결과는 부분규정적 효과만을 고려한 상식적인 예측과는 매우 다르게 나타날 수 있다. 본고는 실제로 그러할 수 있음을 보여주고 있는데, 그 이유를 물가와 무역수지로 나누어 설명해보자.

1) 현 시점에서 과연 전기요금인상의 당위성이 존재하는가. 그리고 만일 그렇다면 어느 정도가 적정한가 하는 문제는 본고의 분석범위를 벗어난다. 인 상요인이 존재한다는 주장의 근거로는, 다른 국가와 비교하여 우리나라의 전기요금수준이 낮다는 점, 현행 투자보수율이 적정투자보수율보다 낮다는 점, 또한 전력의 수급전망에 비추어 공급능력을 확대가 필요하다 국내외의 차 입에 의한 자금조달에 현실적 한계가 있다는 점 등 여러 가지가 제시되고 있다. 그러나 우리나라의 전기요금수준이 낮은가를 단순한 국제비용을 통한 판단하려는 한계가 있으며, 또한 현재의 투자보수율의 적정성 여부를 판단하는 것도 요금지지의 적정성 및 재무제표의 신뢰성 등으로 인하여 그 리 쉬운 문제는 아니다.
먼저 전기요금인상과 관련하여 가장 관심의 대상이 되는 것은 물가에 미치는 효과라고 할 수 있는데, 전기요금인상이 물가에 미치는 영향은 일차적으로 ‘전기요금인상률 x 물가가중치’라는 공식으로 계산할 수 있다. 그러나 전기요금인상의 물가에 대한 영향이 이것으로 끝나는 것이 아님은 자명하다. 이렇게 계산된 수치는 전기요금인상에 따르는 경제의 일반균형적인 반응을 무시한 것이며, 전기가 다른 산업의 중간투입물로 사용되는 데 기인한 물가상승효과조차 고려하지 않은 수치인 것이다. 이러한 직결적인 효과 이외에도 전기요금인상 및 이로 인한 타산업의 산출물가격 상승은 산업간 연관관계에 의하여 추가적인 물가상승을 불러일으키게 되는 것이다. 이와 같은 공급측면의 변화뿐 아니라 수요측 변화도 동시에 고려하고, 또한 더 나아가 환율변화에 의한 가격변화요인까지 종합적으로 고려하여 전기요금인상의 물가에 대한 영향을 예측하기 위해서는 일반균형 분석모형을 사용하는 것이 바람직하다고 할 수 있다. 앞서 지적한 대로 이러한 방법의 이점은 통상적으로 사용되는 재현적인 가정으로부터 오는 단점을 상쇄하고도 남는다. 구체적으로 수치를 들어 설명하면, 전기요금인상률이 4%일 때 전기의 소비자물가 가중치가 14/1,000이므로, 일차적인 소비자물가 상승효과는 약 0.056%가 된다. 그러나 본 분석결과에서는, 종합적인 소비자물가상승률은 이것의 약 1.5배인 0.083%인 것으로 나타났다.

전기요금인상이 무역수지에 미치는 효과를 종합적으로 살펴보

2) 본고에서는 환율을 고정시켜놓고 전기요금인상효과를 분석하였기 때문에, 국내물가상승에 따른 환율하락 그리고 이에 의한 수입차 가격의 상승효과들은 고려되지 않았다. 환율이라는 가격변수의 고정시에도 모형의 균형달성임을 위한 메커니즘을 명시할 필요가 있는데, 여기에서는 무역수지의 조정에 의하여 균형이 이루어지는 것으로 가정하였다. 이는 무제한적인 차입능력(unlimited borrowing capacity)을 가정하는 것과 마찬가지인데, 상당히 제약적인 가정이라고 할 수 있다.
기 위해서는 전기생산 감소에 따른 에너지수입 감소효과뿐만 아니라 각 계화의 세계시장가격 대비 국내가격 상승에 따른 중간재 및 최종재의 수입증가 및 수출감소와 같은 상대가격효과 및 실질국내총생산 감소에 따른 소득효과도 고려하여야 한다. 실제효과는 각 효과의 상대적 크기에 달려 있으므로 사전적으로 막 잘라서 말하기 힘드나, 분석결과는 전기요금인상시 무역수지가 악화되는 것으로 나타난다. 국내물가 상승에 따라 무역수지가 악화된다는 결과는 에너지수입감소로 인해 무역수지가 개선된다는 주장에 비하여 상식과 더 부합하는 것이라고 할 수 있을 것이다.

본고의 정책실험방법의 특징적인 면은 다음과 같다. 일반적으로 일반균형모형에서 가격변수는 모형 내에서 내생적으로 결정되는 변수로 다루어지기 때문에, 전기요금인상과 같이 가격변수를 변화시키는 정책실험(policy simulation)을 하기 위해서는 일반균형모형에서 통상적으로 사용되는 가정 이외에 전기부문에 대한 추가적인 가정을 함으로써 모형을 수정하는 작업이 필요하게 된다. 전기요금이 정부의 정책의지에 의하여 주로 결정되고, 전기공급이 전기의 수요에 맞추어 이루어져 왔던 현실을 반영하여, 여기에서는 전기부문의 균형은 외생적으로 주어진 전기가격과 수요곡선이 만나는 점에서 이루어지는 것으로 가정하였다. 이러한 가정은 전기공급자가 아무런 비용을 지불하지 않고 주어진 가격에서 공급량을 수요량에 맞추어 변화시킬 수 있다는 할당규칙(rationing mechanism)을 전제로 한다고 볼 수 있다.3)

3) 이러한 가정은 일반적으로 임금과 같은 가격변수로 구조적 요인에 의하여 고정되어 있을 때 많이 사용되었던 가정이다. 실제로 이 가정을 구체화하기 위하여 모형 내에서 노동공급곡선을 묘사하는 방정식을 일반균형방정식체계로부터 제거하는 방법이 많이 사용되어왔다. 이에 대한 자세한 설명은 Robinson(1989)을 참고하기 바란다.

두번째로, 본고는 전기요금변동의 정책실험방법에 있어서 손양훈·신동천의 연구와 다르다. 손양훈·신동천의 연구는 전기가격이 의정적으로 주어지는 것으로 간주하였음에도 불구하고 전기 부문의 균형달성을 위한 할당규칙을 가정하는 대신, 전기부문의 균형은 수요와 공급이 만나는 점에서 이루어지는 것으로 간주하였다. 이는 전기부문의 균형이 모형 내의 모든 내생변수의 조정에 의하여 발생된다고 가정하는 것으로 해석될 수 있을 것이다. 그러나 이러한 가정의 현실성 여부는 의심스러운 것일 수 있다. 앞서 설명한 바와 같이 본고에서는 전기부문의 균형이 의생변수인 전기가격과 수요곡선이 만나는 점에서 이루어지는 것으로 가정함으로써 다른 내생변수들이 전기부문의 균형달성을 위하여 예기치 않은 방향으로 변화할 가능성을 출연주었다고 할 수
있다.

마지막으로, 본고의 분석결과는 손양훈·신동천의 분석결과와
특히 물가영향 부분에서 큰 차이를 보이고 있는데, 여러 가지 보
조자료를 토대로 볼 때 본고의 분석결과가 예측할 수 있는 실제
의 효과에 보다 근접한다고 판단된다.4) 그러나 본고와 손양훈·
신동천의 분석결과는 전기요금인상시 물가가 상승하고 무역수지
가 악화되며 생산이 감소한다는 정성적인 변화 측면에서는 유사
하다.

본고의 구성은 다음과 같다. 먼저 제Ⅱ장에서는 본 연구에서
사용한 기본모형을 제시하고, 제Ⅲ장에서는 산업분류방법 및 탄
력치 등 모형에서 사용한 주요 파라미터를 얻는 과정에 대해 설
명한다. 제Ⅳ장에서는 정책모의실험 결과를 소개·논의하고, 마
지막 제Ⅴ장에서는 모형의 한계점 등 결과해석상의 주의점 등에
대해 논의하였다.

Ⅱ. 모 형

이 모형은 de Melo and Tarr(1992)류의 투입-산출관계를 고려
한 소규모개방경제 일반균형모형이라고 할 수 있다. 이미 설명한
바와 같이 본고에서는 전기가격의 의생적 변화의 효과를 분석하
기 위하여 전기산업의 균형이 의생적으로 주어진 전기가격과 수
요목선이 만나는 점에서 이루어지는 것으로 가정하였다. 일반적

4) 손양훈·신동천(1996)에서는 전기요금을 2.80% 인상하였을 때 생산자물가가
가 1.95% 상승하는 것으로 나타난 반면, 본고에서는 전기요금 4% 인상시
생산자물가가 0.11% 상승하는 것으로 나타났다.
으로 이러한 모형은 투입산출표에 의하여 묘사되는 경제를 복제하도록 만들어졌기 때문에, 중간투입을 고려하지 않고 본원적 생산요소인 노동과 자본만을 고려한 거시경제모형과는 생산함수형태에 있어서 차이가 있다. 즉, 여기서 사용되는 한 산업의 생산물에 대한 생산함수는 본원적 생산요소뿐 아니라 중간투입까지 고려한 생산함수이므로, 한 산업의 생산물은 부가가치부문과 중간투입부문으로 구분된다.

또한 이 모형은 일반적인 신고전과정 무역모형과도 차이가 있는데, 그 차이는 대략 다음과 같다. 즉, 신고전과정 무역모형에서 한 교역재 산업은 수출부문이 되든지 아니면 수입부문이 되든지 몇 중의 하나가 되는 것이 보통인데, 이 모형에서는 한 교역재 산업의 생산물에 수입과 수출이 동시에 존재하는 것이 보통이다. 모형이 이와 같이 구성되는 이유는 이 모형이 현실경제를 바탕으로 한 정책분석을 목적으로 하기 때문이다. 즉, 산업을 극단적으로 세분화하지 않는 이상 통상적 산업분류방법으로는 한 산업 내에 수출과 수입이 동시에 존재하는 것이 일반적인 현상이기 때문이다. 이러한 현실과 부합하도록 이와 같은 유형의 모형에서는 한 산업의 생산물이라 할지라도 그것이 수출재료, 수입재료, 아니면 국내재료에 따라서 다른 계 hva로 취급된다. 또한 수입재와 국내재, 그리고 국내재와 수출재간에는 불완전한 대체관계가 존재한다고 가정하는 것이 보통이다. 이를 아밍턴(Armington)가 정더라도 하며 이 가정으로 인하여 국내재와 수입재간, 그리고 국내재와 수출재간 상대가격변화에 의한 대체관계를 파악하는 것이 가능해진다.
1. 모형에 대한 설명

구체적으로 본고에서 사용된 모형은 다음과 같다. 먼저 경제 내에 \(n \)개의 산업이 있다고 하자. 그 각각의 산업에 대하여 수입 재, 국내재, 수출재 등 3개의 서로 다른 재화가 존재한다. 이 경 제에는 네 가지 다른 유형의 기업이 존재한다. 먼저 기업 (1)은 국산중간재 (\(VD \))와 수입중간재 (\(VM \))를 각각 \(PD \)와 \(PM \)의 가격으 로 구입하여 복합중간재 (\(V \))를 생산한다. 기업 (1)의 복합중간재 생산함수는 다음과 같은 CES 생산함수에 의하여 묿사된다.

\[
V_{ij} = AV_{ij}^\delta VM_{ij}^{\rho_i} + (1 - \delta_i)VD_{ij}^{\rho_j} \] \(i, j \)

여기서 \(\delta \)는 각 산업을 나타내며, \(\rho_i \)는 \(1 \)이고 \(0 \leq \delta \leq 1 \)이다. 또한 논문중간재와 수입중간재간의 대체탄력성은 \(\sigma = 1/(1-\rho_i) \)와 같게 된다. 기업 (2)의 행위는 두 단계로 나누 어지는데, 먼저 노동과 자본을 결합하여 부가가치를 생산하고, 그 다음에 그 부가가치와 다른 산업으로부터 중간투입재 \(V_i \)를 \(PV_{ij} \)의 가격으로 구입하여 최종생산물 \(X_i \)를 생산한다.

기업 (2)의 부가가치생산함수는 콕-터글러스 생산함수로 나타낼 수 있고 최종생산물은 고정투입계수 생산함수로 나타내어 진다.

\[
F_i(K_i, L_i) = AX_i L_i^{\alpha_i} K_i^{1-\alpha_i} \] \(i \)

\[
X_i = \min \left[F_i(K_i, L_i), \frac{V_{ij}}{a_{ij}}, \ldots, \frac{V_{ni}}{a_{ni}} \right] \] \(i \)

여기서 \(\alpha_i \)는 노동분배율을 나타내며, \(a_{ij} \)는 투입계수를 나타낸다.

기업 (3)은 최종생산물 \(X_i \)를 국내재 \(D_i \)와 수출재 \(E_i \)로 다음과 같은 고정전환탄력성 (CET: Constant Elasticity of Transforma-

\[
X_i = \overline{AT_i}[\gamma_i E^\rho_i + (1 - \gamma_i) D^\rho_i]^{1/\rho_i}
\]

(4)

여기서 \(\rho_i > 1 \)이고 \(0 \leq \gamma_i \leq 1 \)이다. 마찬가지로 \(\sigma_i = 1/(\rho_i - 1) \)는 국내재와 수출재간의 전환탄력성을 나타낸다.

기업 (4)는 국내소비재 \(CD_i \)와 수입소비재 \(CM_i \)를 각각 \(PD_i \)와 \(PM_i \)의 가격으로 구입하여 복합소비재 \(C_i \)를 생산한다. 복합소비재의 생산함수는 다음과 같다.

\[
C_i = \overline{AC_i}[\beta_i CM_i^{\rho_i} + (1 - \beta_i) CD_i^{\rho_i}]^{1/\rho_i}
\]

(5)

여기서 \(\rho_i < 1 \)이며 \(0 \leq \beta_i \leq 1 \)이고, \(\sigma_i = 1/(1 - \rho_i) \)는 국내소비재와 수입소비재간의 대체탄력성을 나타낸다.

이 경제에는 대표적 소비자(representative consumer)가 존재하며 이 소비자의 효용함수는 복합소비재에 대하여 다음과 같은 콜-더글라스 함수로 나타내어진다.

\[
U = \prod_{i=1}^{n} C_i^{b_i}
\]

여기서 \(b_i > 0 \), \(\sum_{i=1}^{n} b_i = 1 \)이다.

이 경제의 총노동과 공급량과 총가문자록은 각각 \(\overline{KS} \)와 \(\overline{LS} \)로 주어졌다고 가정한다. 마지막으로 이 경제는 소규모 개방경제이므로 수출재와 수입재의 해외시장가격은 주어진 것으로 받아들인다. 또한 이 모형에서 환율이 고정된 것으로 가정되기 때문에 이 경제에는 수출재와 수입재의 국내가격인 \(PE_i \)와 \(PM_i \) 역시 주어진 것으로 다름없이 된다.

정부부문은 없는 것으로 가정하였으며, 또한 투자에 관련된 의 사결정은 없는 것으로 가정하였다. 따라서 한 부문의 산출물에 대한 최종수요는 이 모형에서는 모두 민간소비수요로 취급된
다. 위에서 설명한 모형의 기본적인 구조를 도표로 나타낸 것이 [그림 1]이다.

2. 경제주체의 최적화문제

〈기업 (1)의 비용극소화〉

기업 (1)은 복합중간재 생산량이 주어진 상태에서 수입중간재 가격과 국산중간재 가격을 주어진 것으로 받아들이고 다음과 같이 비용을 극소화한다.

\[
\text{Min } VD_{ij}PD_{ij} + VM_{ij}PM_{ij} \\
\text{s. t. (1)}
\]

이 문제의 일계조건을 정리하면 다음과 같다.

\[
\frac{VM_{ij}}{VD_{ij}} = \left[\frac{\delta_{ij}}{1 - \delta_{ij}} \frac{PD_{ij}}{PM_{ij}} \right]^{0.5}
\]

여기서 \(i, j = 1, \ldots, n \).

〈기업 (2)의 비용극소화〉

기업 (2)는 먼저 최종생산물의 생산량과 본원적 생산요소의 가격 및 중간투입재 가격을 주어진 것으로 받아들이고 총비용 (=본원적 생산요소비용 +중간투입비용)을 다음과 같이 극소화 한다.

5) 이것은 산업연관표의 최종수요부문의 최종수요계수(total final demand) 중에서 수출을 제외하고는 모두 일반消費支出로 간주한다는 것을 의미한다. 즉, 이 모형에서의 일반消費支出에는 산업연관표상의 최종수요부문의政府消費支出, 民間固定資本形成, 政府固定資本形成, 在庫 등의 항목이 포함되어 있다.
[그림 1] 모형의 구조

[1-1] 최종생산물의 생산 및 배분

국내공급 (domestic supply)

gross output → CET(기업 3)

수출공급 (export supply)

부가가치 (value added)

C-D(기업 2)

자본 노동 (capital) (labor)

부합중간재 (composite intermediate)

C-D(기업 2)

Leontief(기업 2)

C-D(기업 1)

CES(기업 1)

국산중간재 수입중간재 ...

(domestic intermediate)

 CES(기업 1)

국산중간재 수입중간재 ...

(domestic intermediate)

[1-2] 부합소비재 생산 및 수요

수요 (consumption)

C-D(기업 4)

부합소비재(1)...

(composite consumption(1))

 CES

국산소비재 수입소비재 ...

(domestic imported)

 CES

국산소비재 수입소비재 ...

(domestic imported)
\[\text{Min}(WL_j + RK_j) + \left(\sum_{i=1}^{n} PV_i V_{ij} \right) \]

\[s. t. \ (2), \ (3) \]

이로부터 다음과 같은 본원적 요소수요함수 및 복합중간투입 재 수요가 결정된다.

\[K_j = \left(\frac{X_j}{AX_j} \right) \left[1 - \frac{\alpha_j}{\alpha_j} \times \frac{W}{R} \right]^{\sigma_j} \] \hspace{1cm} (7)

\[L_j = \left(\frac{X_j}{AX_j} \right) \left[1 - \frac{\alpha_j}{\alpha_j} \times \frac{W}{R} \right]^{\sigma_j-1} \] \hspace{1cm} (8)

\[V_{ij} = a_{ij} X_i \] \hspace{1cm} (9)

여기서 \(i, j = 1, \cdots, n \).

\langle 기업 (3)의 이윤극대화 \rangle

기업 (3)은 주어진 최종생산물 \(X_i \)를 주어진 국내재가격과 수출 재가격하에서 이윤을 극대화하도록 국내시장과 해외시장으로 다음과 같이 배분한다.

\[\text{Max}(E_i PE_i + D_i PD_i) - PX_i X_i \]

\[s. t. \ (4) \]

이 문제의 일계조건을 정리하면 다음과 같다.

\[\frac{D_i}{E_i} = \left(\frac{1 - \gamma_i}{\gamma_i} \right) \left(\frac{PE_i}{PD_i} \right)^{-\alpha_i} \] \hspace{1cm} (10)

여기서 \(i = 1, \cdots, n \). 한 가지 주목할 점은 원칙 (10)에서는 \(n-1 \)개의 방정식만이 사용되는데, 이는 전기부문의 균형은 의생적으로 주어진 전기가격(\(PD_i \), 산업 1이 전기부문이라 가정)과 전기수요가 만나는 점에서 이루어진다는 가정에 의하여 위의 문제에서
도출되는 전기부문의 국내재 공급함수는 균형조건에서는 필요치 않게 되기 때문이다. 이러한 과정이 서론에서 설명한 바와 같이 본 연구의 정책실험결과가 손양훈, 신동천(1996)의 결과와 차이를 가져오게 만드는 이유 중의 하나이다.

〈기업 (4)의 비용극소화〉

기업 (4)는 복합소비재 생산량 및 국내재와 수입재의 가격이 주어진 상태에서 다음과 같이 총비용을 극소화한다.

\[
\begin{align*}
\text{Min } PM_i, CM_i, PD_i, CD_i \\
\text{ s. t. (5)}
\end{align*}
\]

이 문제의 일계조건을 정리하면 다음과 같다.

\[
\frac{CD_i}{CM_i} = \left[\frac{(1-\beta_i)(PM_i)}{\beta_i PD_i} \right]^{\infty}
\]

여기서 \(i = 1, \ldots, n\). 기업 (4)의 비용극소화 문제와 기업 (1)의 비용극소화 문제를 비교하여 살펴보면, 어떤 한 산업의 국내재와 수입재는 다른 제조인 시장에서 중간투입품로 사용되는 국내재(혹은 수입재)와 최종소비재로 사용되는 국내재(혹은 수입재)는 같은 제조로 취급되며 이는 일반 모델의 제조는 그 제조의 용도에 의해서는 구분되지 않는다는 가정이다. 이는 수입중간재와 수입소비재의 가격이 \(PM_i\)로서 동일하고 국산 중간재와 국산소비재의 가격이 \(PD_i\)로서 동일한 것에 반영되어 있다. 만약 어떤 산업의 중간재와 소비재가 다른 제조로 간주되었다고 하더라도 그 산업의 생산물이 중간재 혹은 소비재로 아무런 비용을 부담하지 않고 1 대 1로 전환될 수 있으므로 그 생산물의 가격은 용도에 관계없이 갈아지는 것이라고 해석할 수
있다.

〈소비자의 효용극대화〉

대표적 소비자는 다음과 같은 예산제약하에서 복합소비재량을 선택함으로써 효용을 극대화한다.

$$\sum PC_i C_i = Y$$

여기서 PC_i는 복합소비재 가격을 나타내고 Y는 복합소비재에 대한 총지출을 나타낸다. 이로부터 복합재에 대한 수요함수가 다음과 같이 도출된다.

$$C_i = \frac{bs_i}{PCC_i} Y$$ \hspace{1cm} (12)

〈해외부문〉

해외부문은 수출부문과 수입부문으로 나눌 수 있는데, 소규모 개방경제의 가정에 의하여 수출수요 및 수입공급은 주어진 세계 시장가격에서 무한탄력적인 것으로 가정한다. 이를 식으로 나타내면 다음과 같다.

$$PE_i = PWE_i ER$$ \hspace{1cm} (13)

$$PM_i = PWM_i ER$$ \hspace{1cm} (14)

여기서 PWE_i 및 PWM_i는 각각 i산업의 수출재와 수입재의 세계 시장 가격으로서 외생적으로 주어지며 ER은 환율을 나타낸다. 이 모형에서 환율은 고정된 것으로 가정한다.
3. 모형의 균형(Equilibrium)

이 모형의 균형에서는 소비자의 효용은 극대화되고 각 기업의 비용 혹은 이윤은 극소화 혹은 극대화된다. 또한 각 기업의 생산 함수는 규모에 대한 수익불변의 특성을 가지며 생산물시장의 진입이 자유로우므로 각 기업의 최적화된 이윤은 균형에서 0이 된다. 기업 (1) ～ 기업 (4)에 대하여 이윤이 0이 된다는 조건은 다음과 같이 표현될 수 있다.

\[
P V_j = \overline{AC}_{j}^{-1} [\delta_{j}^{\alpha_{i}} P M_{i}^{1-\alpha_{i}} + (1-\delta_{j})^{\alpha_{i}} P D_{i}^{1-\alpha_{i}}]^{1/(1-\alpha_{j})} \tag{15}
\]

\[
P X_j = \overline{AX}_{j}^{-1} [\alpha_{j}^{\alpha_{i}} (1-\alpha_{j})^{\alpha_{i}} W^{\alpha_{i}} R^{1-\alpha_{i}}] + \sum_{i=1}^{n} a_{ij} P V_j \tag{16}
\]

\[
P X_i = \overline{AT}_{i}^{-1} [\gamma_{i}^{\beta_{i}} P E_{i}^{1+\beta_{i}} + (1-\gamma_{i})^{1-\beta_{i}} P D_{i}^{1-\beta_{i}}]^{1/(1+\beta_{i})} \tag{17}
\]

\[
P C_i = \overline{AC}_{i}^{-1} [\beta_{i}^{\alpha_{i}} P M_{i}^{1-\alpha_{i}} + (1-\beta_{i})^{\alpha_{i}} P D_{i}^{1-\alpha_{i}}]^{1/(1-\alpha_{i})} \tag{18}
\]

또한 이 모형의 균형에서 본원적 요소시장은 다음과 같이 청산된다.

\[
\sum_{i \in N} K_i = \overline{KS} \tag{19}
\]

\[
\sum_{i \in N} L_i = \overline{LS} \tag{20}
\]

국내재에 대한 시장청산조건은 다음과 같다.

\[
D_j = VTD_j + CD_j \tag{21}
\]

\[
VTD_j = \sum_{i \in N} VD_{ij} \tag{22}
\]

수출재에 대한 균형은 국내의 수출공급과 무한탄력적인 수출 수요가 만나는 점에서 이루어지고 수입재에 대한 균형은 국외의 수입수요 (= 중간재 수입수요 + 소비재 수입수요)와 무한탄력적인 수입공급이 만나는 점에서 이루어진다.
소비자의 총지출은 요소소득과 해외차입의 합과 같아지며 이는 다음과 같이 표시될 수 있다.

\[Y = W \cdot LS + R \cdot KS - B \cdot ER \]

여기서 \(B \)는 외화가격으로 표시한 무역수지를 나타내며 이는 다음과 같이 정의된다.

\[B = \sum_{i \in T} (PWE_i E_i - PWM_i CM_i - PWM_i VTM_i) \]
\[VTM_i = \sum_{j \in N} VM_{ij} \]

마지막으로, 모든 상태가격은 전기부문의 국내제가격에 대하여 나타낼 수 있다. 즉, 만일 전기부문을 1이라고 하면, \(PD_1 = 1 \) 된다.

위의 식 (1), (4)~(25)는 이 모형의 균형방정식 체계이며 이로부터 각 재화의 상태가격 및 산출량, 그리고 각 산업에 고용되는 생산요소량 및 요소가격이 결정된다.

III. 산업분류방법 및 파라미터 결정

여기서 필요한 자료는 크게 산업연관표와 대체탄력성 수치들이다. 본 연구에서는 현재 이용가능한 가장 최근 자료인 1993년도 산업연관표를 이용하여 산업별 생산, 중간재수요, 수출, 수입, 소비 등의 자료를 구하였다. 그리고 각 산업의 부가가치율 및 중간투입비율은 산업연관표에서 직접 계산하였다. 산업별고용자료에서 이용하는 재업자수는 60대의 자영업주 및 무급가족중사자를 포괄하는 취업자를 기준으로 해당연도 경제활동에 종사한
年人員(man-year)을 의미한다. 하지만 고용가효은 5년마다 발표하고 있기 때문에 1993년도 산업연관표에는 무형표가 없다. 그러
서 1990년도 산업연관표상의 고용가효자료를 이용하여 추정하였다. 즉, 1993년도 총취업자수는『경제활동인구연보』(통계청, 1993)상
의 경제활동인구 증가율(7.1%)을 적용하여 추정하였고, 산업별
취업자수는 1990년도 산업연관표상의 고용가효자료를 이용하여 산
업별 산출량에 1993년도 고용을 비례적으로 조정하여 추정하였
다. 산업별 대체탄력성 추정치들은 국내에서 추정된 것들이 없기
때문에 대부분 참고문헌에서 기인하였다.

1. 산업분류

1993년도의 産業聯関表(韓國銀行)에 따르면 우리나라의 산업
을 405부문으로 분류하고 있다. 여기서는 이 405부문의 산업을
16부문으로 분류하고 있다. 여기서는 이 405부문의 산업을
16부문으로 분류한다. 품목수산, 광업, 음식료품, 섬유 및 가죽, 종이 및 목제
품, 화학, 석유 및 석탄제품, 금속, 기계, 전기 및 전자, 수송기계,
기타제조업, 전력, 유통, 서비스 Ⅰ(건설, 통신, 금융보험, 부동산
및 사업서비스, 공공행정 및 국방), 서비스 Ⅱ(교육 및 보건, 사
회 및 개인 서비스)으로 통합하였다. 산업분류에서 고려한 것
은 기본적으로는 산업연관표의 통합대분류(26부문)와 산업별 전
력투입계수를 참고로 하였다. 그리고 최종수요부문에서의 陰數값이
나타나는 경우에는 관련산업으로 통합하였다. 물론 산업을 세분
할수록 더 자세한 연관관계를 얻을 수 있지만, 이에 따르는 費用
도 증가하기 마련이다. 즉, 산업분류를 ひんし分割수록 필요한 대체
탄력성들이 증가하여, 어떤 경우에는 文獻調査를 통해서도 필요
한 대체탄력성들을 구하기 힘든 경우도 있다. 또한 解을 구하는
과정에서 계산상의 어려움이 발생할 수도 있다. 이와 같은 문제
<table>
<thead>
<tr>
<th>분류</th>
<th>산업</th>
<th>405기본부문 분류기호</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>농림수산</td>
<td>1-34</td>
</tr>
<tr>
<td>2</td>
<td>광업</td>
<td>35-50</td>
</tr>
<tr>
<td>3</td>
<td>음식료품</td>
<td>51-93</td>
</tr>
<tr>
<td>4</td>
<td>섬유·가죽</td>
<td>94-124</td>
</tr>
<tr>
<td>5</td>
<td>종이 및목제품</td>
<td>125-142</td>
</tr>
<tr>
<td>6</td>
<td>화학</td>
<td>146-176, 188-193</td>
</tr>
<tr>
<td>7</td>
<td>석유·석탄제품</td>
<td>177-187</td>
</tr>
<tr>
<td>8</td>
<td>금속</td>
<td>210-245</td>
</tr>
<tr>
<td>9</td>
<td>기계</td>
<td>246-267, 294-297</td>
</tr>
<tr>
<td>10</td>
<td>전기·전자</td>
<td>268-293</td>
</tr>
<tr>
<td>11</td>
<td>수송기계</td>
<td>298-311</td>
</tr>
<tr>
<td>12</td>
<td>기타제조업</td>
<td>143-145, 194-209, 312-317</td>
</tr>
<tr>
<td>13</td>
<td>전력</td>
<td>318-321</td>
</tr>
<tr>
<td>14</td>
<td>유동</td>
<td>342-343, 346-358</td>
</tr>
<tr>
<td>15</td>
<td>서비스 I</td>
<td>322-341, 359-377</td>
</tr>
<tr>
<td>16</td>
<td>서비스 II</td>
<td>344-345, 378-405</td>
</tr>
</tbody>
</table>

를 고려하여 본고에서는 (표 1)과 같은 산업분류를 사용하였다.

2. 대체탄력성

여기서 모형화한 일반균형연산(CGE) 모형은 전기요금변동의 수입품과 국산품과의 대체효과를 파악하기 위해서 정형화했기 때문에, 이 모형에 사용되는 대체탄력성은 시뮬레이션의 결과에 직접적인 영향을 미치게 된다. 그래서 이 대체탄력성의 추정은 매우 중요하다. 그러나 현실에 있어서 대체탄력성을 추정하기가 어려기 때문에 일반적으로 대부분은 문헌조사에 의존하고 있다. 여기서도 마찬가지로 대체탄력성을 문헌조사에 의해 구했다.

6) 일반적으로 대체탄력성은 문헌조사를 통해 얻는다. 이것의 합리화에 대한 논의는 이원영(1993) 관조.
表 2 모형의 대체탄력성

<table>
<thead>
<tr>
<th>분류</th>
<th>산업</th>
<th>아미터대체탄력성</th>
<th>전환탄력성</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>농림수산</td>
<td>1.42</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>광업</td>
<td>0.50</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>음식료품</td>
<td>0.31</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>섬유·가죽</td>
<td>2.58</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>중미 및 목제품</td>
<td>3.15</td>
<td>3.0</td>
</tr>
<tr>
<td>6</td>
<td>화학</td>
<td>3.55</td>
<td>3.0</td>
</tr>
<tr>
<td>7</td>
<td>석유·석탄제품</td>
<td>2.36</td>
<td>3.0</td>
</tr>
<tr>
<td>8</td>
<td>금속</td>
<td>3.18</td>
<td>3.0</td>
</tr>
<tr>
<td>9</td>
<td>기계</td>
<td>2.01</td>
<td>3.0</td>
</tr>
<tr>
<td>10</td>
<td>전기·전자</td>
<td>3.15</td>
<td>3.0</td>
</tr>
<tr>
<td>11</td>
<td>수송기계</td>
<td>2.01</td>
<td>3.0</td>
</tr>
<tr>
<td>12</td>
<td>기타제조업</td>
<td>3.55</td>
<td>3.0</td>
</tr>
<tr>
<td>13</td>
<td>전력</td>
<td>0.50</td>
<td>3.0</td>
</tr>
<tr>
<td>14</td>
<td>유동</td>
<td>0.50</td>
<td>3.0</td>
</tr>
<tr>
<td>15</td>
<td>서바스 I</td>
<td>0.50</td>
<td>3.0</td>
</tr>
<tr>
<td>16</td>
<td>서바스 II</td>
<td>0.50</td>
<td>3.0</td>
</tr>
</tbody>
</table>

3. 기타 파라미터의 캘리브레이션(Calibration)

본 모형을 산업연관표에 의하여 묘사된 현실세계와 일치시키기 위해서는 각종 대체탄력성 수치 이외에도 각 산업의 중간투입계수 (a_i), 수입중간재와 국내중간재간, 수입소비재와 국내소비재간, 그리고 수출재와 국내재간의 분배 파라미터들 (δ_i, β_i, ...
\(\gamma \) 및 효용함수의 파라미터 \(bs_i \) — 각 복합소비재가 소비자지출에서 차지하는 비율 — 등이 필요하게 된다. 그 외에도 부가가치 생산함수의 산업별 노동분배율 \(\alpha_i \)도 필요하다.

먼저 각 산업의 중간투입계수는 각 산업의 산출물 가격을 1로 준 후 산업연관표에서 직접 계산한다. 소비자 효용함수의 파라미터 \(bs_i \)는 콤판-디글러스 함수에서는 소비자의 지출에서 각 복합소비재에 대한 지출이 차지하는 비율과 같아진다는 사실을 이용하여 구한다. 또한 각 CES 생산함수에서의 분배 파라미터들은 각 생산자의 일계조건을 사용하여 산업연관표에서 추어진 자료 및 외부적으로 주어진 탄력성 수치들을 이용하여 구한다. 예를 들어, 수출계와 국내계간의 분배 파라미터 \(\gamma \)는 식 (10)을 사용하여 산업연관표에서 추어지는 수출 및 내수 자료와 외부적으로 주어진 전환탄력성 \(\sigma_i \)를 이용하여 구한다(여기서 수출계와 국내계 가격은 각각 1로 가정한다). 이와 같은 방법으로 다른 분배 파라미터도 구할 수 있다.

산업별 노동분배율 \(\alpha_i \)를 구하는 방법은 약간의 설명이 필요하다. 결론적으로 산업별 노동분배율은 기업 (2)의 높이유형간 및 부가가치 생산함수의 일차항차라는 성질에서 구할 수 있다. 먼저 식 (16)은 다음과 같이 다시 나타낼 수 있다.

\[
WL_j + RK_j = PX_jX_j - \sum_{i=1}^{n} a_{ij} PV_iX_j
\]

본고에서 사용한 전략은 융직을 이용하여 산업별 자본소득을 구하고 이를 이용하여 산업별 노동분배율을 그 다음에 구하는 것이다. 융직의 우변은 최종생산물의 가치에서 중간투입물의 가치를 뺀 부가가치를 나타내는 것으로서 우리가 이미 알고 있는 수치이다. 융직의 좌변은 산업별 부가가치가 각 생산요소에 분배 되는 것을 나타내고 있는데, 현재 추어진 자료는 산업별 고용자
효과뿐이다. 여기에서 사용한 방법은 W와 R을 외부로부터 구하고
위의 식을 만족시키는 산업별 자본스톡을 구해내는 방법이다. 여기서 R은 우리나라의 1993년도 3년만기 회사채수익률을 이용하
여 0.1로 하였다. W는 10인 이상 사업체를 대상으로 한 1993년
『임금구조기본통계조사보고서』를 이용하여 구하려고 시도하였으
나, 이 방법을 사용할 경우 산업별 노동분배율이 너무 크게 추정
되었으나, 따라서 본고에서는 고용자료가 이용가능한 1990년도 산
업연관표에서 1990년 임금률(약 0.5)을 구하고 이를 임금상승률
을 고려하여 삼항조정하여 사용하였다. 그 결과 사용된 W는 0.6
이었다. 이와 같은 과정을 통하여 산업별 자본스톡을 구하게 되
면 부가가치생산수수의 일차동차라는 성질과 완전경쟁적 시장의
가정에 의하여 산업별 노동분배율을 구할 수 있다. 그 결과 캐리
브레이트된 산업별 노동분배율의 산업간 격차는 실제보다 크다
고 판단되었으나, 그 이유에 대한 고찰 및 다른 캐리브레이션 방
법을 사용해보는 것은 추후 연구과제로 남겨두었다.

IV. 정책실험 결과

본장에서는 전기요금이 1993년의 수준에 비하여 각각 4%,
8%, 12% 및 30% 상승한 경우의 거시경제적 효과 및 산업별 효
과를 분석하였다. 거시경제적인 변수로는 실질국민총생산(GNP),
소비자물가지수, 생산자물가지수, 무역수지 등을 고려하였으며,
산업별로는 16개 산업의 산출, 수출입, 생산자가격 등을 고려하
였다.
1. 거시경제적 효과

먼저 거시경제적 효과를 <표 3>을 통하여 살펴보면, 생산자물가지수는 전기요금 4%, 8%, 12% 및 30% 인상시 각각 0.112%, 0.207%, 0.443%, 1.090% 상승하는 것으로 추정되었으며, 소비자물가지수는 각각 0.083%, 0.146%, 0.391%, 0.964% 상승하는 것으로 나타나고 있다. 여기서 한 가지 주목할만한 점은 물가가 전기요금인상에 대하여 다소 누진적으로 상승한다는 점이다. 전기요금 상승시 물가에 영향을 주는 채널은 대략 다음과 같은 것들이 있을 수 있다. 전기요금이 오르면 이는 직접적으로 전기를 중간투입물로 사용하는 산업의 생산비용 상승시키게 될 것이며 이는 결국 산출물 가격의 상승으로 이어지게 될 것이다. 이러한 직접적인 효과의 크기는 평균적으로 전기투입계수(생산액 1단위당 전기투입의 비중)가 높을 때 클 것이다.

그 다음으로는 다시 투입-산출관계에 의하여 각 산업의 산출물이 다른 산업의 중간투입물로 사용되게 됨으로써 한 산업의 산출물 가격상승은 다른 산업의 산출물 가격상승을 유발하게 될 것이며, 이는 다시 투입-산출관계를 거치면서 추가적인 산출물 가격상승으로 이어지게 될 것이다. 이러한 간접적인 효과는 그 크기가 기하급수적으로 증가하게 될 것이며, 간접적 효과의 총합

<표 3> 전기요금인상의 거시경제적 효과

(단위: %)

<table>
<thead>
<tr>
<th></th>
<th>실질국민총생산</th>
<th>생산자물가지수</th>
<th>소비자물가지수</th>
<th>수출입</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>실질국민총생산</td>
<td>생산자물가지수</td>
<td>소비자물가지수</td>
<td>수출입</td>
</tr>
<tr>
<td>4% 인상시</td>
<td>-0.019</td>
<td>0.112</td>
<td>0.083</td>
<td>-0.045</td>
</tr>
<tr>
<td>8% 인상시</td>
<td>-0.042</td>
<td>0.207</td>
<td>0.146</td>
<td>-0.091</td>
</tr>
<tr>
<td>12% 인상시</td>
<td>-0.062</td>
<td>0.443</td>
<td>0.391</td>
<td>-0.212</td>
</tr>
<tr>
<td>30% 인상시</td>
<td>-0.128</td>
<td>1.090</td>
<td>0.964</td>
<td>-0.719</td>
</tr>
</tbody>
</table>
온 산출물 가치에서 중간투입이 차지하는 비중이 평균적으로 높을수록 크게 될 것이다. 위의 논의를 종합하여보면 전기요금인상에 따른 공급측면에서의 물가상승유발효과는 평균적으로 산업의 전기투입계수가 높을수록, 그리고 중간투입비율이 높을수록 크게 될 것이다.

그러나 이것만이 전기요금인상으로 인한 물가상승효과의 전부는 아니다. 소규모 개방경제의 가정에 의하여 해외시장에서의 가격이 고정된 상태에서 전기요금의 인상으로 인하여 국내재의 가격이 상승하면, 이는 생산자들의 중간재 구매결정 및 소비자들의 최종재 구매결정에 있어서 국내재로부터 수입재로의 대체를 일으킬 것이고, 이러한 변화는 대외거래부문의 초기균형상태를 무너뜨리게 된다. 이때 환율이 얼마나 신속적으로 조정되느냐에 따라서 가격조정과 물량조정의 상대적인 크기가 결정될 것이다.

반일 물량조정이 경직적이어서 대외거래부문의 균형이 가격에 의하여 전적으로 조정되어야 한다면, 환율은 국내재와 수입재의 국내가격비율을 초기균형상태와 동일하게 유지시킬 수 있을 만큼 하락하여야 할 것이고, 이는 수입재의 국내가격을 상승시키게 될 것이다. 환율하락으로 인한 최종소비재의 가격상승은 소비자 물가지수의 상승으로 이어지게 될 것이며, 수입중간재의 가격상승은 다시 투입-산출관계를 거치면서 내재제의 가격상승으로 이어지게 될 것이다. 이와 같은 과정을 통하여 다시 국내가격 및 환율조정이 반복하여 이루어지면서 전기요금인상 후의 경제는 새로운 균형에 도달하게 될 것이다. 이와는 반대로 환율조정이 경직적이어서 균형의 회복이 모두 물량조정에 의하여 이루어져야 한다면, 이때 환율하락에 의한 수입재 국내가격의 상승효과는 없겠지만 무역수지는 훨씬 큰 폭으로 약화되게 될 것이다.

이 두 가지 경우 모두 현실과는 괴리가 있는 극단적인 경우라
고 판단되며, 현실에서는 어느 정도의 무역수지 악화와 어느 정도의 환율하락 효과가 같이 나타나리라고 보는 것이 타당할 것이다. 만일 이것이 사실이라면, 전기요금인상으로 인한 물가상승 효과는 투입-산출관계에 의한 국내재의 가격상승효과에 국한되는 것이 아니라, 국내재와 수입재의 가격차이가 발생함으로써 생기는 환율조정과정에 의한 수입재(중간재 및 최종소비재)의 가격상승 및 이에 의한 추가적인 국내재 가격상승효과도 포함하게 되는 것이다. 본장에서 이루어진 시뮬레이션은 명목환율이 고정이라는 가정하에 이루어졌기 때문에 대외거래부문의 불균형은 전적으로 물량조정으로 나타나게 되며, 따라서 위에서 설명한 환율하락에 의한 물가상승효과는 포함하고 있지 않다.

위의 결과를 보면 생산자물가지수 상승폭이 소비자물가지수 상승폭보다 작는데, 그 이유는 본 모형에서 생산자물가지수의 바스켓(basket)의 경우 전기요금 상승에 직접적인 영향을 받는 국내재로만 구성되어 있고, 소비자물가지수의 바스켓은 국내재뿐만 아니라 가격변동이 없는 수입소비재의 복합생산물로 구성되어 있기 때문이다. 즉, 이러한 물가상승폭의 차이는 바스켓에서 전기요금변동에 따라 직접적으로 가격이 상승하는 국내재 비중의 차이에 기인한다.

이번에는 전기요금인상이 실질국민총생산에 미치는 효과를 살펴보자. (표 3)에서 살펴보면 전기요금이 각각 4%, 8%, 12% 및 30% 인상될 경우 실질국민총생산(GNP)은 각각 -0.019%, -0.024%, -0.062% 및 -0.128%로서 비례적으로 감소하는 것으로 나타나고 있다. 실질국민총생산이 감소하는 이유는 대략 다음과 같다. 먼저 전기요금의 상승으로 인하여 전기를 중간생산품로 사용하는 다른 산업의 비용이 투입-산출관계를 거치면서 상승하고, 이는 각 산업의 공급곡선을 상방이동시키는 것으로 나타난다.
다. 따라서 전기요금인상 이후의 정책과정을 거친 최종균형상태에서는 평균적으로 각 산출물시장에서 가격은 상승하고 산출량은 감소하는 것으로 나타나게 된다. 이는 다른 조건이 동일할 때 실질국민총생산의 감소로 이어지게 된다.

전기요금인상이 수출입에 미치는 효과를 (표 3)을 통해 살펴보면, 전기요금인상후 수출과 수입은 모두 감소하는 것으로 나타났는데, 수출의 감소율이 수입의 감소율보다 크게 나타났다. 따라서 무역수지는 전기요금인상에 따라 악화될 것이다. 구체적으로 전기요금이 각각 4%, 8%, 12% 및 30% 인상되었을 때, 수출은 각각 -0.045%, -0.091%, -0.212% 및 -0.719% 감소하는 것으로 나타났고, 수입은 각각 -0.043%, -0.089%, -0.205% 및 -0.538% 감소하는 것으로 나타났다. 즉 수출과 수입은 앞서 물가의 경우와 같이 전기요금인상에 비례하여 누적적으로 감소하는 것으로 나타났다.

위와 같이 수출입이 변하는 이유는 대략 다음과 같이 설명할 수 있다. 먼저 전기가격의 상승은 위에서 설명한 바와 같이 실질 국민총생산을 감소시키며, 이에 의한 부(-)의 소득효과는 수입수요의 감소로 나타날 것이다. 따라서 다른 조건이 동일하다면 국민총생산 감소에 의한 소득효과는 무역수지를 개선하는 방향으로 작용하게 된다. 그러나 대체효과는 이와는 반대방향으로 작용하여 무역수지를 악화시키는 방향으로 작용하게 된다. 대체효과에 의한 무역수지 악화효과를 외인별로 나열하여 보면 다음의 세 가지를 들 수 있다. 첫째는 수입증가액 가격에 대한 국산증가액 상대가격의 상승에 따라 생산자들이 수입증가액을 전기요금인상 이전보다 더 많이 구입하는 효과이고, 둘째는 수입 최종소비가격에 대한 국산 최종소비가격 상대가격의 상승에 따라 소비자들이 수입소비택의 구매를 늘리는 효과이다. 세번째 효과는 수출이 감
소하는 효과인데, 이는 수출제의 가격에 대한 국내제의 상대가격 상승에 따라 최종생산물을 내수와 수출로 배분하는 기업이 내수공급을 늘리고 수출공급을 줄이는 데 기인하는 효과이다.

위와 같은 효과들을 고려할 때, 수입은 소득감소에 의한 수입 수요 감소효과와 국내증간대 및 소비재 가격의 상승에 의한 대체효과의 상대적인 크기에 따라 증가할 수도 감소할 수도 있을 것이다. 본 시뮬레이션에서 전기요금인상에 따라 수입이 감소되는 것으로 나타난 것은 실질국민총생산의 감소에 따른 수입감소효과가 국내외의 상대가격 변화에 의한 수입증가효과보다 덜 크다는 것을 의미한다. 한편 수출은 본 모형에서는 최종생산물이 국내제와 수출제로 배분되는 과정에서 결정된다. 본 모의정책분석에서는 최종생산물이 감소하고, 또한 수출제 가격이 고정된 상태에서 국내제 가격이 상승하므로 수출이 감소하는 것은 당연한 결과라고 할 수 있다. 이러한 결과는 일반적으로 국내가격 상승시 무역수지가 악화되는 경협적인 사실과도 일치하며, 안정조건(stability condition)이 만족되는 통상적인 모형으로부터 예상할 수 있는 결과라고 할 수 있었다. 특히 본 모형에서 환율이 고정되어 있음을 감안할 때 국내가격의 상승에 따른 무역수지 악화는 너무도 자연스런 결과라고 할 수 있다. 만일 환율의 변동을 고려하였다면 무역수지의 악화 정도는 감소하리라고 기대할 수 있을지 모르나, 이에 의한 국내물가의 상승폭은 더욱 커졌으리라 고 기대할 수 있다.7)

7) 물론 환율을 고정시키지 않고 변동할 수 있는 것으로 가정하면, 환율을 결정하기 위하여 다른 방식의 모형완결(model closure)이 필요하며, 이때 두 가지 모형으로부터 계산된 내생변수값들의 적절적인 비교는 주의를 기해야 한다.
2. 산업부문별 효과

전기요금의 인상이 산업의 생산, 가격, 수출입에 미치는 효과는 산업별로 상이하다. 그 효과가 산업별로 차이를 보이는 이유는 산업별 전기투입계수 및 중간투입비율이 상이하기 때문일 뿐만 아니라, 수입재와 국내재간의 아밍턴 탄력성 및 CET 함수의 국내재와 수출재간의 탄력성 수치들이 산업별로 상이한 테에도 원인이 있다. 그뿐 아니라, 전기요금의 인상은 산업 생산물의 상대가격체계를 바꿀으므로써 국내재 내에서도 제조간 대체효과를 수반한다. 이와 같은 산업간 차이가 존재하는 상황에서 거시변수의 변화를 통한 일반균형적 피드백(feed-back)효과도 산업별로 상이할 것이다. 따라서 위의 논의를 고려해볼 때 전기요금인상이 개별산업에 미치는 효과를 어느 한두 가지 파라미터만 가지고 사전적(ex-ante)으로 예측하는 것은 힘들 뿐 아니라 일반적으로 틀릴 가능성이 크다. 따라서 개별산업간 전기요금인상에 의한 효과의 차이는 사후적(ex-post)으로 해석하는 것이 바람직할 것이다.

〈가격에 미치는 효과〉

〈표 4〉에는 전기요금을 1993년 수준보다 4% 인상하였을 때의 산업별 효과가 정리되어 있다. 전기요금이 8%, 12% 및 30% 인상되었을 때의 산업별 효과는 4% 인상되었을 때와 비교하여 본질적인 차이가 없었으므로 부표로 처리하였다. 먼저 생산물의 가격변화를 살펴보면 가장 먼저 눈에 띄는 점은 대부분 산업의 가격이 상승한다는 점이다. 이론적으로 보면, 전기요금인상으로 인하여 어느 한 산업의 공급곡선이 상방으로 이동한다고 하여도 상대가격체계의 변화로 인한 수요감소의 폭이 이보다 더 크면,
(표 4) 전기요금인상의 산업별 효과 : 4% 인상시

<table>
<thead>
<tr>
<th>산업</th>
<th>생산</th>
<th>생산자 가격</th>
<th>수출</th>
<th>수입</th>
</tr>
</thead>
<tbody>
<tr>
<td>농림수산</td>
<td>0.060</td>
<td>-0.088</td>
<td>0.288</td>
<td>-0.094</td>
</tr>
<tr>
<td>광업</td>
<td>0.020</td>
<td>-0.085</td>
<td>0.281</td>
<td>-0.132</td>
</tr>
<tr>
<td>음식료품</td>
<td>-0.035</td>
<td>0.107</td>
<td>-0.383</td>
<td>0.002</td>
</tr>
<tr>
<td>섬유가죽</td>
<td>0.360</td>
<td>-0.074</td>
<td>0.296</td>
<td>0.081</td>
</tr>
<tr>
<td>종이목제품</td>
<td>0.006</td>
<td>0.019</td>
<td>-0.089</td>
<td>-0.034</td>
</tr>
<tr>
<td>화학</td>
<td>-0.009</td>
<td>0.043</td>
<td>-0.234</td>
<td>0.049</td>
</tr>
<tr>
<td>석유석탄제품</td>
<td>-0.045</td>
<td>0.055</td>
<td>-0.233</td>
<td>-0.019</td>
</tr>
<tr>
<td>금속</td>
<td>0.003</td>
<td>-0.000</td>
<td>-0.003</td>
<td>-0.077</td>
</tr>
<tr>
<td>기계</td>
<td>0.011</td>
<td>0.014</td>
<td>-0.075</td>
<td>-0.026</td>
</tr>
<tr>
<td>전기전자</td>
<td>0.017</td>
<td>0.006</td>
<td>-0.020</td>
<td>-0.054</td>
</tr>
<tr>
<td>수송기계</td>
<td>0.007</td>
<td>0.022</td>
<td>-0.087</td>
<td>-0.032</td>
</tr>
<tr>
<td>기타제조업</td>
<td>0.016</td>
<td>-0.013</td>
<td>0.045</td>
<td>-0.082</td>
</tr>
<tr>
<td>전력</td>
<td>-0.226</td>
<td>4.000</td>
<td>-8.057</td>
<td>-1.724</td>
</tr>
<tr>
<td>유동</td>
<td>-0.022</td>
<td>0.064</td>
<td>-0.172</td>
<td>-0.067</td>
</tr>
<tr>
<td>서비스 I</td>
<td>-0.020</td>
<td>0.089</td>
<td>-0.269</td>
<td>-0.060</td>
</tr>
<tr>
<td>서비스 II</td>
<td>-0.001</td>
<td>0.066</td>
<td>-0.193</td>
<td>-0.051</td>
</tr>
<tr>
<td>전산업</td>
<td>-0.004</td>
<td>0.112</td>
<td>-0.045</td>
<td>-0.043</td>
</tr>
</tbody>
</table>

그 산업의 생산물 가격은 감소할 수도 있을 것이다. 그러나 대부분의 산업에서 생산물 가격이 상승하였다는 것은 전체요금인상으로 인한 투입-산출관계를 경유한 생산비용 상승효과가 지배적 (dominant)이었거나, 아니면 상대가격 하락으로 인하여 수요가 늘어나는 효과가 지배적이었다고 해석할 수 있다.

산업부문별로 보면, 먼저 농림수산업(-0.088%)과 광업(-0.085%), 그리고 섬유가죽(-0.074%) 및 기타제조업(-0.013%)과 같은 일부 제조업의 가격은 감소한 반면 서비스업(0.064~0.089%)과 다른 모든 제조업(0.006~0.107%)의 가격은 상승하였다. 서비스업의 가격상승이 두드러지는 이유는 소비재 및 중간재의 국내재와 수입재간 탄력성이 다른 부문에 비하여 크게 낮은
대 기인한 것으로 판단된다. 제조업 내에서는 음식료품(0.107%)과 석유·석탄제품(0.055%)의 가격상승률이 비교적 크게 나타났다.

〈생산량의 변화〉

전기요금인상에 따른 생산량의 변화패턴은 산업에 따라 다르다. 서비스업종의 경우 생산량은 모두 감소하였음을 볼 수 있는데, 이는 역시 주로 서비스부문의 아방한 탄력성 수치들이 상대적으로 낮은 편 기인한 것으로 보인다. 또한 서비스부문의 가격이 모두 상승하였다는 사실을 고려할 때 서비스부문에서는 공급측의 상당이동에 의한 효과가 지배적이었음을 유추할 수 있다.

서비스부문 이외에 음식료품(-0.035%), 화학(-0.009%), 석유·석탄제품(-0.045%)과 같은 일부 제조업의 생산이 전기요금 인상에 따라 감소하는 것으로 나타났다. 한편 다른 제조업과 농림·수산업(0.060%) 및 광업(0.020%)의 생산량은 모두 증가하는 것으로 나타났다.

전기부문의 생산량은 전기가격 4% 인상에 따라 0.226% 감소하였는데, 여기에서 한 가지 주의할 점은 이 결과를 수요탄력성으로 해석하는 것은 적절치 않다는 것이다. 그 이유는 전기요금 상승에 의한 생산량 감소가 주어진 수요곡선상의 이동이 아니라 수요곡선 자체가 이동함으로써 생기는 효과까지 포함하고 있기 때문이다. 어쨌거나 전기공급이 항상 수요를 충족하여야 하는 현실에서 본 시뮬레이션에서와 같이 전기부문의 생산량이 가격인상에 따라 감소한다는 것은 추가비용투자의 요인을 감소시킨다는 점에서 시사적이다. 본 모형이 정태적(static) 모형이고 현실경제에서는 경제성장에 따라 전기에 대한 수요가 증가하고 있는
점으로 간환할 때, 이 결과는 전기요금인상이 전력수요의 증가율을 감소시키는 것으로 해석되어도 무방하리라 생각된다. 이러한 효과가 통상의 전력수요예측에서 고려되지 않고 있다는 점은 각별한 주의를 요한다고 할 수 있었다.

〈수출입에 미치는 효과〉

먼저 수출은 농림·수산업(0.288%)과 광업(0.281%)에서 증가한 것을 제외하고는 거의 모든 제조업과 서비스업에서 감소하는 것으로 나타났다. 제조업 내에서는 음식료품(-0.383%), 화학(-0.234%), 석유·석탄제품(-0.233%)의 수출이 비교적 크게 감소하였는데, 그 이유는 생산량의 감소와 국내가격 상승으로 인하여 소득효과와 대체효과가 모두 수출을 감소시키는 방향으로 작용하였기 때문이다. 반면 섬유·가죽(0.296%) 및 기타제조업(0.045%)의 수출은 오히려 증가하는 것으로 나타났는데, 그 이유도 마찬가지 방법으로 설명될 수 있다. 수입 역시 농림·수산업(-0.094%), 광업(-0.132%), 그리고 거의 모든 제조업에서 감소하는 것으로 나타났다. 그러나 음식료품(0.002%), 섬유·가죽(0.081%), 화학(0.049%)과 같이 수입이 늘어나는 산업도 있는 것으로 나타났다.

3. 민감도 분석

일반적으로 CGE 모형의 분석결과는 생산함수의 대체탄력성 수치에 민감할 것으로 알려져 있다. 따라서 본고에서는 전기요금을 4% 인상하였을 때 실질국민소득, 물가, 수출입과 같은 거시 변수의 변화분이 생산함수의 대체탄력성 수치에 얼마나 민감한가를 살펴보았다. 〈표 5〉에는 국내소비재와 수입소비재간의 대체
(표 5) 대체탄성성에 대한 민감도분석

<table>
<thead>
<tr>
<th></th>
<th>$\sigma \times 0.8$</th>
<th>$\sigma \times 0.9$</th>
<th>$\sigma \times 1.1$</th>
<th>$\sigma \times 1.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>소비재 대체탄력성 (σ_c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>실질가격소득</td>
<td>-0.014</td>
<td>-0.016</td>
<td>-0.019</td>
<td>0.049</td>
</tr>
<tr>
<td>생산자물가지수</td>
<td>0.246</td>
<td>0.083</td>
<td>0.112</td>
<td>0.113</td>
</tr>
<tr>
<td>소비자물가지수</td>
<td>0.234</td>
<td>0.044</td>
<td>0.083</td>
<td>0.086</td>
</tr>
<tr>
<td>수출</td>
<td>-0.411</td>
<td>-0.043</td>
<td>-0.045</td>
<td>-0.033</td>
</tr>
<tr>
<td>수입</td>
<td>-0.094</td>
<td>-0.042</td>
<td>-0.043</td>
<td>-0.031</td>
</tr>
<tr>
<td>중간재 대체탄력성 (σ_v)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>실질가격소득</td>
<td>-0.021</td>
<td>-0.022</td>
<td>-0.019</td>
<td>-0.010</td>
</tr>
<tr>
<td>생산자물가지수</td>
<td>0.274</td>
<td>0.063</td>
<td>0.112</td>
<td>0.109</td>
</tr>
<tr>
<td>소비자물가지수</td>
<td>0.273</td>
<td>0.027</td>
<td>0.083</td>
<td>0.080</td>
</tr>
<tr>
<td>수출</td>
<td>-0.465</td>
<td>-0.037</td>
<td>-0.045</td>
<td>-0.043</td>
</tr>
<tr>
<td>수입</td>
<td>-0.112</td>
<td>-0.037</td>
<td>-0.043</td>
<td>-0.043</td>
</tr>
<tr>
<td>전환탄력성 (σ_t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>실질가격소득</td>
<td>-0.016</td>
<td>-0.017</td>
<td>-0.019</td>
<td>-0.008</td>
</tr>
<tr>
<td>생산자물가지수</td>
<td>0.068</td>
<td>0.211</td>
<td>0.112</td>
<td>0.090</td>
</tr>
<tr>
<td>소비자물가지수</td>
<td>0.031</td>
<td>0.192</td>
<td>0.083</td>
<td>0.062</td>
</tr>
<tr>
<td>수출</td>
<td>-0.028</td>
<td>-0.362</td>
<td>-0.045</td>
<td>-0.051</td>
</tr>
<tr>
<td>수입</td>
<td>-0.027</td>
<td>-0.088</td>
<td>-0.043</td>
<td>-0.050</td>
</tr>
</tbody>
</table>

탄력성(σ_c), 국내중간재와 수입중간재간의 대체탄력성(σ_v), 수출 재와 국내재간의 전환탄력성(σ_t)은 (표 5)에 나타난 기준값들에 비교하여 각각 10% 및 20%씩 증감시켰을 때 8) 모의정책분석의 결과가 어떻게 달라지는가가 요약되어 있다.

먼저 주목할만한 점은 탄성성의 비교적 큰 변화에도 불구하고 모의정책실험의 정성적(qualitative)인 결과는 기준탄성성에 의한 결과와 대체로 같다는 점이다. 이에 예외는 소비재 대체탄력성과

8) 좀더 세밀하게 대체탄성성을 변화시켜도 기본적인 특성에는 변화가 없다. 좀더 세밀하게 대체탄성성을 각각 5%, 10% 및 15%씩 증감시켰을 때의 결과는 부록의 [부록 1]~[부록 3] 참조.
전환탄력성을 증가시켰을 때 실질 국민소득이 증가한 경우밖에 없었다. 따라서 전기요금인상시 실질 국민소득이 감소하고, 물가가 상승하며, 수출입이 각각 감소하되 수출감소율이 수입감소율보다 크게 늘어난 결과는 비교적 신뢰할만한 것이라고 할 수 있었다. 그러나 모의정책실험의 정량적(quantitative) 결과는 대체탄력치들 각각의 변화에 대하여 비교적 민감하게 변화한다고 볼 수 있다. 예를 들어, 전환탄력성 수치를 기준값에 비하여 각각 10% 증가시켰을 때 생산자물가상승률은 0.112%에서 각각 0.090% 및 0.211%로 크게 달라졌다. 또한 분석사례가 탄성치의 변화에 대하여 단조적으로 변하지 않는 것을 볼 수 있었는데, 이는 모형의 비선형성(non-linearity) 및 탄성치의 산업분류별 차이에 기인한 것으로 추측된다. 그럼에도 불구하고 기준탄성치에 의한 분석수치들이 대체탄력성의 비교적 큰 변화에 의하여 얻어진 수치들과 비교하여 극단적인 값이 아니라는 점은 결과에 대한 신뢰도를 높이는 데 기여하리라고 생각된다.

4. 결과에 대한 추가적 논의

전기요금인상시 관심이 집중되는 부분은 물가에 미치는 영향이라고 할 수 있다. 그러면 본고에서는 전기요금인상이 물가에 미치는 효과와 관련하여, 과연 어떠한 경로를 통한 효과들이 고려되었는가. 그리고 과연 얼마나 급격한 이러한 효과를 기대할 수 있는가? 본 모형에서 계산된 효과는, 전기요금의 인상에 의한 전기산업의 가격상승 및 전기가 타산업의 중간투입물로 사용되는 데 기인한 타산업의 가격상승과 같은 직접적인 효과뿐 아니라, 산업간 투입-산출관계에 기인한 간접적인 가격상승효과 및 수요측 변화요인이 모두 고려된 것으로 볼 수 있다. 과연 이러한 효
과가 얼마나 빠르게 나타날지는 경제적인 문제로서 사전적으로 판단하기는 어렵지만, 앞서 설명한 경로에 의한 가격상승효과가 실험되는 데는 그야말로 시간이 필요치 않으리라 생각할 수 있다. 그러나 위의 점문에 좀더 구체적인 대담을 하기 위해서 본 모형에서 사용된 가정에 관하여 언급할 필요가 있다고 판단된다.

본 모형에서 사용한 가정 중 물가영향의 정도를 결정짓는 데 중요한 두 가지 가정은 환율이 고정되어 있다는 점, 투입계수들이 파라미터로 취급되어 상대가격변화에 의한 요소간 대체가 허용되지 않는다는 점을 들 수 있다. 환율고정이라는 가정은 환율 하락에 의한 수입제 가격상승이라는 경로를 허용하지 않는다는 점에서 계산된 물가상승률이 실제로보다 작게 나타나게 만드는 가정이라고 볼 수 있다. 반면 고정투입계수(fixed input coefficients) 가정은, 대체가능한 생산함수의 경우에 비하여, 가격이 많이 오른 요소로부터 적게 오른 요소로 수요가 대체되어 전체적으로 물가 상승압력을 약화시키는 효과를 허용하지 않는다는 점에서 계산된 물가상승률이 실제로보다 크게 나타나게 만드는 가정이라고 볼 수 있다. 결국 본 모형에서 계산된 물가상승률이 실제로보다 과대 혹은 과소평가되었느냐 하는 것은 이 두 가지 가정에 따른 효과 중 어느 것이 크냐 하는 문제일 수도 있었다. 이를 판단하는 것은 이 모형에서 다룰 수 있는 범위를 벗어난다고 할 수 있다.

이와 같은 모형의 제약과 관련하여 한 가지 주의할 점은 본 모형에서 계산된 수치가 전기가격상승이라는 의생적 변화에 대한 경제의 '단기 혹은 중기적 반응(short or medium run response)'을 반영한다는 점이다. 일반적으로 정태적(static) 모형의 시뮬레이션 결과를 의생적 변화 전후의 경제의 장기균형들간의 비교로 해석할 수 있었으나, 본 모형에서 사용된 고정투입계수라
는 가정이나 환경조건이라는 가정에 비추어 이 결과는 단기 혹은 중기적 변화라고 해석하는 것이 보다 타당하다.

V. 요약 및 결론

본고에서는 전기요금인상의 거시경제적 효과 및 산업부문별 효과를 CGE 모형을 이용하여 살펴보았다. 모의정책실험 결과 전기요금인상시 물가의 상승하고 실질국민총생산은 감소하며, 수출입은 각각 감소하는 것으로 나타났다. 구체적으로, 전기요금을 1993년 수준보다 4%, 8%, 12% 및 30% 인상하였을 때 생산자물가지수는 각각 0.112%, 0.207%, 0.443% 및 1.090% 상승하는 것으로 나타났으며, 소비자물가지수는 각각 0.083%, 0.146%, 0.391% 및 0.964% 상승하는 것으로 나타났다. 또한 실질국민총생산(real GNP)은 각각 0.019%, 0.042%, 0.062%, 0.128% 감소하는 것으로 나타났다. 전기요금인상시 수출과 수입은 모두 감소하는 것으로 나타났으며, 수출의 감소율이 수입의 감소율보다 큰 것으로 나타났다. 수출은 전기요금 4%, 8%, 12% 및 30% 인상시 각각 0.045%, 0.091%, 0.212% 및 0.719% 감소하는 것으로 나타났고, 수입은 각각 0.043%, 0.089%, 0.205% 및 0.538% 감소하는 것으로 나타났다.

산업부문별 효과는 반드시 거시경제적 효과와 일치하지 않는 것을 볼 수 있었는데, 이러한 현상은 전기투입계수 및 중간투입 비율, 그리고 각종 탄력성 수치들 등의 산업간 차이 등에 원인이 있다고 할 수 있다. 산업부문별 효과에서 주목할만한 점은 전기요금인상에 따라 비교역제에 가까운 서비스업의 생산량 감소효
과가 두드러진다는 것이라고 할 수 있다.

그러나 본 모형의 시뮬레이션 결과는 다음과 같은 몇 가지 점에서 주의를 기하여 받아들여져야 한다고 생각된다. 첫째로, 본 모형은 일반적으로 아명된 함수 및 CET 함수의 탄력성 수치들에 민감한 것으로 알려져 있는데, 본장에서 사용된 탄성치들은 우리나라의 자료에서 엄밀히 추정된 수치들이 아니라 de Melo and Tarr(1992)에서 사용된 수치들을 거의 그대로 받아들인 것이다. 여러 가지 제약상 외국에 대한 연구에서 사용된 탄성치들을 사용하였다는 것은 매우 유감스러운 일이다.

둘째로, 모형을 캐러브레이트하는 과정에서 얻어진 파라미터들이 얼마나 신뢰성 있는 수치인가에 대한 보다 면밀한 검증과정을 거쳐야 보다 만족스런 시뮬레이션 결과를 얻을 수 있을 것이 다. 예를 들면, 본고에서는 자본스톡이나 부가가치 생산함수의 노동분배율과 같은 파라미터가 다른 자료로부터 계산되었는데, 자본스톡이나 노동분배율과 같은 파라미터는 다른 데이터로부터 직접 구할 수도 있는 수치이다. 이러한 수치들과 본 시뮬레이션에서 사용된 수치들간에 얼마나 괴리가 있는가를 살펴보고, 결과가 이에 얼마나 의존하는가를 살펴보는 작업은 결과의 신뢰성을 높이는 데 중요한 부분이라고 할 수 있었다.

마지막으로, 이 모형은 전기산업의 시장구조를 매우 단순하게 가정함으로써 왜 전기요금을 인상하는가에 대한 미시적 원인에 대해서는 전혀 다루고 있지 못하다. 이 모형은 초기 균형상태를 외생적으로 주어진 가격과 수요곡선이 만나는 점에서 이루어지고 있는 것으로 가정하고 있는데, 만일 현실의 전기산업구조가 이러한 가정과 괴리되어 있다면 분석결과는 그만큼 주의를 기하여야 받아들여져야 될 것이다. 또한 이 모형은 전기요금인상으로 인한 판매수입의 증가가 어떻게 재투자되는가에 대한 과정을 반
영하지 못하고 있기 때문에, 이러한 동태적인 측면을 감안할 때 효과가 어떻게 달라질 수 있는지에 대하여 다루지 못하고 있다. 따라서 전기요금인상의 거시경제적 효과가 부정적이라는 결과를 전기요금이 인상되어서는 안 된다고 해석하는 것은 오류일 수 있다.

산업구조가 급속히 변하고 전력산업이 경제 내에서 차지하는 위치를 감안해볼 때, 본장의 분석결과는 이용가능한 가장 최근자료를 바탕으로 하여 일반균형적인 경제의 반응이 고려된 것이라는 점에서 유용성이 있다고 할 수 있었다. 그러나 무엇보다도 중요한 것은 모형의 분석결과 얻어진 수치들이 기존의 결과에 비하여 전기요금인상으로부터 우리가 상식적으로 예상할 수 있는 변화와 절적으로뿐 아니라 양적으로도 가깝다는 점이다. 이런 이유로 인하여 본 모형의 정책실험 결과는 위에서 언급한 많은 미비점과 개선점에도 불구하고 의미있게 받아들여질 여지가 있는 것이라 생각된다.
전기요금인상의 산업별 효과 : 8% 인상시

(단위 : %)

<table>
<thead>
<tr>
<th>산업</th>
<th>생산</th>
<th>생산가격</th>
<th>수출</th>
<th>수입</th>
</tr>
</thead>
<tbody>
<tr>
<td>농림수산업</td>
<td>0.093</td>
<td>-0.133</td>
<td>0.278</td>
<td>-0.177</td>
</tr>
<tr>
<td>광업</td>
<td>0.021</td>
<td>-0.096</td>
<td>0.114</td>
<td>-0.226</td>
</tr>
<tr>
<td>음식료품</td>
<td>-0.055</td>
<td>0.171</td>
<td>-0.624</td>
<td>-0.041</td>
</tr>
<tr>
<td>섬유가죽</td>
<td>0.446</td>
<td>-0.087</td>
<td>0.417</td>
<td>0.070</td>
</tr>
<tr>
<td>종이목재품</td>
<td>0.011</td>
<td>0.027</td>
<td>-0.199</td>
<td>-0.076</td>
</tr>
<tr>
<td>화학</td>
<td>-0.007</td>
<td>0.055</td>
<td>-0.271</td>
<td>0.025</td>
</tr>
<tr>
<td>석유석탄제품</td>
<td>-0.080</td>
<td>0.112</td>
<td>-0.479</td>
<td>0.013</td>
</tr>
<tr>
<td>금속</td>
<td>0.006</td>
<td>-0.003</td>
<td>-0.134</td>
<td>-0.144</td>
</tr>
<tr>
<td>기계</td>
<td>0.023</td>
<td>0.018</td>
<td>-0.161</td>
<td>-0.058</td>
</tr>
<tr>
<td>전기전자</td>
<td>0.027</td>
<td>0.009</td>
<td>-0.133</td>
<td>-0.098</td>
</tr>
<tr>
<td>수송기계</td>
<td>0.006</td>
<td>0.041</td>
<td>-0.220</td>
<td>-0.056</td>
</tr>
<tr>
<td>기타제조업</td>
<td>0.036</td>
<td>-0.044</td>
<td>-0.010</td>
<td>-0.207</td>
</tr>
<tr>
<td>전력</td>
<td>-0.340</td>
<td>8.000</td>
<td>-18.204</td>
<td>-3.352</td>
</tr>
<tr>
<td>운송</td>
<td>0.023</td>
<td>0.043</td>
<td>-0.213</td>
<td>-0.093</td>
</tr>
<tr>
<td>서비스 I</td>
<td>-0.044</td>
<td>0.162</td>
<td>-0.600</td>
<td>-0.069</td>
</tr>
<tr>
<td>서비스 II</td>
<td>-0.002</td>
<td>0.108</td>
<td>-0.410</td>
<td>-0.091</td>
</tr>
<tr>
<td>전산업</td>
<td>-0.014</td>
<td>0.207</td>
<td>-0.091</td>
<td>-0.089</td>
</tr>
</tbody>
</table>
<부표 2> 전기요금인상의 산업별 효과 : 12% 인상시

<table>
<thead>
<tr>
<th>산업</th>
<th>생산</th>
<th>생산자 가격</th>
<th>수출</th>
<th>수입</th>
</tr>
</thead>
<tbody>
<tr>
<td>농림수산</td>
<td>0.289</td>
<td>-0.396</td>
<td>0.886</td>
<td>-0.473</td>
</tr>
<tr>
<td>광업</td>
<td>0.017</td>
<td>-0.082</td>
<td>-0.170</td>
<td>-0.582</td>
</tr>
<tr>
<td>음식료품</td>
<td>-0.158</td>
<td>0.524</td>
<td>-1.826</td>
<td>-0.066</td>
</tr>
<tr>
<td>섬유가죽</td>
<td>1.357</td>
<td>-0.259</td>
<td>1.318</td>
<td>0.275</td>
</tr>
<tr>
<td>종이목제품</td>
<td>0.036</td>
<td>0.079</td>
<td>-0.547</td>
<td>-0.183</td>
</tr>
<tr>
<td>화학</td>
<td>-0.027</td>
<td>0.172</td>
<td>-0.785</td>
<td>0.144</td>
</tr>
<tr>
<td>석유석탄제품</td>
<td>-0.209</td>
<td>0.326</td>
<td>-1.334</td>
<td>0.122</td>
</tr>
<tr>
<td>금속</td>
<td>0.018</td>
<td>-0.014</td>
<td>-0.344</td>
<td>-0.397</td>
</tr>
<tr>
<td>기계</td>
<td>0.079</td>
<td>0.052</td>
<td>-0.419</td>
<td>-0.117</td>
</tr>
<tr>
<td>전기전자</td>
<td>0.079</td>
<td>0.032</td>
<td>-0.359</td>
<td>-0.238</td>
</tr>
<tr>
<td>수송기계</td>
<td>0.021</td>
<td>0.128</td>
<td>-0.619</td>
<td>-0.112</td>
</tr>
<tr>
<td>기타제조업</td>
<td>0.126</td>
<td>-0.172</td>
<td>0.129</td>
<td>-0.677</td>
</tr>
<tr>
<td>전력</td>
<td>-0.600</td>
<td>12.000</td>
<td>-25.886</td>
<td>-4.914</td>
</tr>
<tr>
<td>유동</td>
<td>0.086</td>
<td>0.123</td>
<td>-0.562</td>
<td>-0.220</td>
</tr>
<tr>
<td>서비스 I</td>
<td>-0.164</td>
<td>0.551</td>
<td>-1.936</td>
<td>-0.127</td>
</tr>
<tr>
<td>서비스 II</td>
<td>-0.004</td>
<td>0.343</td>
<td>-1.223</td>
<td>-0.221</td>
</tr>
</tbody>
</table>

전산업 | -0.018 | 0.443 | -0.212 | -0.205 |

(단위: %)
〈부표 3〉 전기요금인상의 산업별 효과: 30% 인상시

<table>
<thead>
<tr>
<th>산업</th>
<th>생산</th>
<th>생산가격</th>
<th>수출</th>
<th>수입</th>
</tr>
</thead>
<tbody>
<tr>
<td>농림수산</td>
<td>1,061</td>
<td>-1,572</td>
<td>5,095</td>
<td>-0,705</td>
</tr>
<tr>
<td>광업</td>
<td>0,066</td>
<td>-0,232</td>
<td>0,646</td>
<td>-0,506</td>
</tr>
<tr>
<td>음식료품</td>
<td>-0,496</td>
<td>1,512</td>
<td>-4,105</td>
<td>0,623</td>
</tr>
<tr>
<td>섬유가죽</td>
<td>2,773</td>
<td>-0,482</td>
<td>3,440</td>
<td>1,472</td>
</tr>
<tr>
<td>종이목제품</td>
<td>0,133</td>
<td>0,163</td>
<td>-0,263</td>
<td>0,484</td>
</tr>
<tr>
<td>화학</td>
<td>-0,106</td>
<td>0,420</td>
<td>-0,999</td>
<td>1,250</td>
</tr>
<tr>
<td>석유석탄제품</td>
<td>-0,547</td>
<td>0,809</td>
<td>2,353</td>
<td>1,215</td>
</tr>
<tr>
<td>금속</td>
<td>0,032</td>
<td>0,002</td>
<td>0,029</td>
<td>0,086</td>
</tr>
<tr>
<td>기계</td>
<td>0,239</td>
<td>0,131</td>
<td>-0,031</td>
<td>0,738</td>
</tr>
<tr>
<td>전기전자</td>
<td>0,221</td>
<td>0,089</td>
<td>0,087</td>
<td>0,431</td>
</tr>
<tr>
<td>수송기계</td>
<td>0,128</td>
<td>0,305</td>
<td>-0,465</td>
<td>0,732</td>
</tr>
<tr>
<td>기타제조업</td>
<td>0,334</td>
<td>-0,407</td>
<td>1,271</td>
<td>-0,637</td>
</tr>
<tr>
<td>전력</td>
<td>-1,772</td>
<td>30,000</td>
<td>-49,623</td>
<td>-9,962</td>
</tr>
<tr>
<td>유동</td>
<td>0,068</td>
<td>0,466</td>
<td>-0,898</td>
<td>0,392</td>
</tr>
<tr>
<td>서비스I</td>
<td>-0,330</td>
<td>1,315</td>
<td>-3,577</td>
<td>0,556</td>
</tr>
<tr>
<td>서비스II</td>
<td>-0,090</td>
<td>0,855</td>
<td>-2,136</td>
<td>0,435</td>
</tr>
<tr>
<td>전산업</td>
<td>-0,065</td>
<td>1,090</td>
<td>-0,719</td>
<td>-0,538</td>
</tr>
</tbody>
</table>
[부도 1] 아밍턴 대체탄성치에 대한 민감도 분석

[부도 2] 중간재 대체탄성치에 대한 민감도분석
[부도 3] 전환탄력성에 대한 민감도 분석
参考文献

박진근・나성린・이성순・전영섭・신동천.『전기요금이 국제경쟁력에 미치는 영향연구』. 국제무역경영연구원, 1994.
손영훈・신동천.『전력요금 조정의 거시경제적 효과』.『국가경제연구』. 제2권 제2호, 1996.
이원영.『한국경제의 산업무역모형』. 한국개발연구원, 1993.
이홍구.『불완전경쟁하에서의 무역장벽 완화효과』.『한국개발연구』. 1992 여름.

Hanson, K., S. Robinson, and S. Tokarick, “U.S. Adjustment in the 1990s: A CGE Analysis of Alternative Trade Strate-

論評

全 瑛 俊
（한국조세연구원 전문연구위원）

이 논문은 소규모 개방경제 CGE모형을 이용하여 전기요금의 인상효과를 분석한 연구이다. 저자가 발휘 바와 같이 전기는 모든 산업의 투입요소로 사용되고 있으며 또한 각 산업별 투입비율이 상이하므로 전기요금 인상의 파급효과는 산업에 따라 상이하게 나타날 것으로 예상된다. 이러한 점에서 전기요금인상의 효과분석은 CGE모형으로 적절히 수행될 수 있으며, 또한 가장 최근의 자료, 특히 1993년도 산업연관표를 사용하여 이에 대한 분석은 한 점에서 이 연구의 의의를 찾을 수 있을 것이다.

이 연구가 갖는 기존의 연구와의 분석기법상 차이점은, 전기가격이 일방적으로 정부에 의해서 정해지며 전기의 공급은 전기의 수요에 맞추어 이루어진다는 합당 규칙(rationing mechanism)에 의하여 이루어진다고 가정한 것이다. 이러한 가정의 현실성 여부와 설정된 모형과 일관성이 있는가 하는 점에서는 의문의 여지가 있다. 이 논문에서 사용된 모형을 저자는 단기 혹은 중기의 경제를 상정한 것이라고는 하지만, 「기업(2)의 비용극소화」결정에 의하면 본원적 생산요소인 노동과 자본의 대체가 가능한 것으로 볼 때 상당히 장기의 경제를 상정한 것이 아닌가 생각한다. 저자가 설정한 합당규칙에 의하면 수요량에 맞추어 공급량이 조정되는 것으로 되어 있는데, 노동과 자본의 대체가 가능한 장기모형에서 이것이 가능한가 하는 의문이 생길 수 있다. 과거의 관행으로 보아도 전기요금은 불가상승의 한 요인이라는 점으로 인
해 전기요금의 현실화가 이루어지지 않고 저평가되어 왔다. 이 경우 전기에 대한 초과수요가 발생하며 과소공급된 전기를 할당하는 방식이 과거의 관행이었다고 할 수 있다. 따라서 아무런 미시적 원인에 대한 규명 없이 할당규칙에 의한 전기공급형태를 규정하기보다는, 어떠한 외생적인 요인에 의한 전기생산비용의 변화에 의해 전기요금의 가격이 변화한 상황을 상정하여 분석을 행하는 것이 보다 적당한 설정이 아닌가 한다.

또 하나 지적하고 싶은 것은, 전기요금인상의 효과를 평가함에 있어 거시경제 변수와 산업별 가격 및 수량 변수의 변화만을 분석하고 국민후생측면에 대한 언급은 전혀 없다는 것이다. 모형에는 representative agent를 상정하고 있으므로 후생평가에 큰 어려움이 없을 것으로 보이며, 정책결정의 기준이 국민후생이 되어야 한다는 점을 감안한다면 후생평가가 꼭 이루어져야 한다고 생각한다.

이 연구에서는 최종수요부분의 항목들 중 민간고정자본 형성과 정부부문은 고려하고 있지 않다. 민간고정자본 형성을 감안하지 않은 이유로 저자는 이 논문에서 사용한 모형은 기본적으로 정태모형이라는 점을 들고 있다. 그러나 동태적 모형으로 확장하지 않은 경우라도 민간고정자본 형성과 정부부문은 최종수요부분의 한 항목으로 모형에 포함될 필요가 있다고 본다. 첫번째 이유는 이 논문에서 상정하고 있는 본원적 생산요소인 자본량을 합리화하는 근거가 될 수 있다는 것이다. 두번째 이유는 간접세와 관련하여 정부부문이 포함될 필요가 있다는 것이다. 통상의 산업연관표에는, 중간투입부문의 각 항목에는 간접세가 포함되어 있지 않고 간접세는 국민계정의 세제와 같이 부가가치의 한 부분으로 제시되어 있으며, 최종수요부문에는 부가가치부분에 포함되어 있는 간접세의 총액이 최종수요 각 항목에 모두 전가되어
있는 형태로 나타나고 있다. 다시 말하면, 산업연관표상에는 경제의 내생부문의 중간투입부문의 각 항목은 세전가격을 기준으로 작성된 것이지만 간접세의 가치를 포함한 세후가격은 기준으로 작성되어 있지 않다. 그러나 전기세가격인상의 경제의 각 부문에 대한 과급효과를 살펴보기 위해서는 세전가격이 아니라 세후가격을 기준으로 작성된 내생부문을 이용하여 분석할 필요가 있다.
따라서 부문별·상품별간접세 부담이 명시적으로 고려되어야 하고, 이러한 간접세 수입과 균형을 이루는 정부부문을 최종수요의 한 부문으로 도입할 필요가 있다고 사료된다.

CGE모형을 분석의 도구로 사용할 때 가장 큰 어려움 중의 하나로 파라미터의 선정을 들 수 있다. 우리나라의 경우 특히 각종 파라미터에 대한 추정에 관한 기존의 연구가 부족하며, 또한 calibration을 위해 필수적인 자본스톡 연구와 각종 노동행위에 대한 면밀한 실증분석이 부족하여 외국의 파라미터값을 사용하는 경우가 많다. 그러나 이러한 한계에도 불구하고 파라미터 값을 추정한 기존의 연구에 대한 literature survey를 통해 기존의 연구결과를 이용하려는 노력이 있어야 된다고 본다. 기존 연구의 예로 신동천 교수의 '수입제와 국내제의 대체탄력성에 대한 연구'(『경제학연구』, 제44집 2호)의 추정치 등 기존의 연구를 이용한 분석을 해볼만하다고 생각한다.

저자가 수행한 민감도 분석에서는 소비재 대체탄력성, 중간재 대체탄력성, 혹은 전환탄력성의 수준을 일률적으로 변화시킨 경우들을 상정하고 있다. 만일 이 논문의 모형이 거시모형이라면 이러한 민감도 분석에 상당한 의미가 있다고 할 수 있으나, 생산 부문을 여러 부문으로 나눈 CGE모형에서는 탄력성의 일률적인 변화보다는 부문별 탄력성의 변화가 차이가 나는 경우가 민감도 분석에 적합하다고 할 수 있다. 따라서 기존의 CGE모형에서 사용한 탄력성의 몇몇 예들을 이용하여 민감도 분석을 행하는 것이 이 연구와 관련하여 더 적합하다고 생각한다.

金 東 石
(본院 專門研究員)

우리 경제가 에너지를 비효율적으로 사용하고 있고 효율적인 에너지사용을 위한 노력이 충분히 이루어지지 않고 있음을 몇 가지 간단한 경제지표를 통하여 쉽게 확인할 수 있으며, 에너지의 비효율적인 사용이 가져오는 부정적 효과에 대해서도 논의의 여지가 없다. 대부분의 에너지원을 수입에 의존하고 있는 현 상황에서 비효율적인 에너지소비는 국토수지, 에너지공급의 안정성, 국제경쟁력, 환경 등의 측면에서 매우 큰 부정적 효과를 가져온다. 특히 최근 들어 많은 관심을 끌고 있는 기후변화협정의 협상결과에 따라 우리 경제는 어떻게 해야 할지에 능이게 될 것이며 이 과정에서 에너지의 효율적 소비를 위한 많은 노력이 요구된다.

비효율적인 에너지소비의 원인에 대하여 전문가들은 대체로 에너지 다消費型 산업구조와 경제적 유인의 부족, 즉 높은 에너지가격을 지적하고 있는데, 이중 후자가 더욱 근본적인 원인이라
고 할 수 있다. 우리나라의 에너지실질가격은 1985년 이후 꾸준히 하락하여 왔으며, 특히 1995년 전력의 실질가격은 1985년의 약 50%에 불과하다. 에너지가격 인상의 당위성은 에너지소비의 효율성 증진과 에너지소비로부터의 외부효과 상쇄에서 찾을 수 있다. 그러나 에너지가격의 인상폭을 결정할 때에는 경제전체 및 각 산업에 미칠 영향에 대한 연구가 선행되어야 하며, 이러한 연구는 직접적 효과만을 고려한 부분균형의 분석이 아니라, 적·간접적 효과가 모두 고려된 일반균형의 분석이어야 한다. 이러한 의미에서 이 논문은 시의적절하고 신뢰도가 높으며 정책결정에 큰 도움이 되리라고 예상한다.

전기요금인상이 국민경제에 미치는 효과를 분석하기 위하여 이 논문이 사용한 방법론은 계산가능한 일반균형(computable general equilibrium: CGE) 모형이다. CGE모형은 주어진 의생변수값에 대하여 일련의 연립방정식체계를 만족시키는 내생변수값을 구하고 의생변수의 변동이 내생변수에 미치는 영향을 파악하기 위한 분석방법의 하나로 1980년대 이후 활발히 사용되어 왔다. 우리나라에서는 에너지·환경분야에 CGE모형을 적용한 연구결과가 일부 있으나, 기본적으로 CGE모형을 적용하려면 경제의 모든 분야가 포함되어야 하기 때문에 자료가공 및 작업의 양이 방대하여 많은 연구가 이루어져지 않고 있는 실정이며, 이 사실만으로도 이 논문의 가치를 평가할 수 있다고 하겠다. 한편 전력분구의 균형에 대한 이 논문의 가정, 즉 의생적인 전기가격과 수요곡선이 만나는 점에서 균형이 이루어진다는 가정은 매우 현실적인 것이라고 판단되며, 정책실험의 결과해석에 있어 저자들이 보여준 신중함과 엄밀함 역시 이 논문의 신뢰도를 높이고 있다.

이 논문이 가지고 있는 몇 가지 문제점을 지적하면 다음과 같
다. 우선 CGE모형을 이용한 연구의 신뢰성은 사용된 모수(parameter)의 신뢰성에 직접적으로 의존하는데, 기존의 국내 연구와 마찬가지로 이 논문 역시 대부분의 모수를 외국의 문헌으로부터 인용하고 있으며, 이것이 이러한 연구들의 근본적인 한계점이라고 할 수 있다. 외국의 연구결과를 사용하지 않고 저자들이 직접 계산한 모수들 중 산업별 노동분배율의 도출과정에 약간의恣意性이 보이는 것도 이 논문의 단점 중 하나이다. 항후 이 분야에 대한 폭넓은 기초연구가 요망된다. 한편 이 논문에서는 분 석의 편의를 위하여 정부부문과 투자관련 의사결정이 없는 것으로, 즉 수출을 제외한 최종수요가 모두 민간소비지출인 것으로 가정하고 있다. 그러나 1993년 수출을 제외한 최종수요 274조원 중 민간소비지출이 차지하는 비중은 약 54%에 불과하므로, 이러한 가정이 결과에 미친 영향이 작지 않았을까라 예상된다.

둘째, 서두에 언급한 바와 같이 이 논문에서는 전력부문의 현황에 대한 분석과 전기요금인상의 당위성에 대한 논의가 배제되어 있다. 이 문제가 정책결정을 결정하는 영향을 미치는지, 아니면 고려해야 할 최대변동폭에 영향을 미칠 수 있음을 감안할 때 이에 대한 간단한 논의를 통하여 논문의 완성도를 높일 수 있었을 것이다.

셋째, 이 논문에서는 전기요금인상에 따른 에너지사용의 효율성 증진효과가 고려되지 않고 있으며, 따라서 실질국민총생산 및 수출의 감소와 물가인상 등 이 논문에서 계산된 전기요금인상의 부정적 거시경제효과의 과대평가된 것이라고 할 수 있다. 전기요금인상은 다른 생산요소로의 대체를 통한 전력소비의 감소(단기요금특성상의 이동)를 유도할 뿐 아니라 에너지절약에 대한 연구개발을 촉진시켜 경제적적적으로 전기소비의 효율성을 증진시키고(단기요금특성 자체의 좌향이동 혹은 장기요금특성상
의 이동) 국제시장에서의 경쟁력을 높이는 효과를 가지며, 이 효과가 이 논문에서 계산된 수출감소분을 초과할 수도 있다. 뿐만 아니라, 이러한 논의는 다른 에너지원에도 적용된다.

넷째, 이 논문은 여타 에너지가격의 인상 없이 전기요금만이 인상되는 상황을 설정하고 있으나 이 가정은 상당히 비현실적인 것으로 보인다. 우리나라에서 화력발전이 차지하는 높은 비중을 감안할 때, 전기요금의 인상은 여타 에너지가격의 인상에 수반되어 이루어질 것이기 때문이다.

마지막으로, 이 논문에서 아쉬운 점은 다른 연구결과와의 비교가 이루어지지 않고 있다는 점이다. 예를 들어 전기요금인상이 물가에 미치는 영향은 산업연관표를 이용한 물가상태 및 모델에 의해서도 쉽게 계산할 수 있다. 손양훈·신동천(1996)의 연구를 포함한 이 세 가지 연구결과를 비교하는 것은 이 논문의 신뢰도를 평가할 수 있는 유용한 방법의 하나이다.
Reforms and Changes in Korean Labor Market
Comment : Chong-hoon Rhee / Chang-yong Rhee / Jin Park

An Analysis on the Effects of Outward Direct Investment
Comment : E. Young Song / Won-hyuk Lim

Decrease in Forecasting Power of M2 and Frequent Changes in Policy Goals:
A Study on the Korean Monetary Policy Since 1980
Comment : Chul-soo Kim / Yoon-jae Yoo

The Effects of Electricity Price Change in Korea: An Analysis Based on the CGE Framework
Comment : Young-jun Chun / Dong-seok Kim

For subscription to THE KDI JOURNAL OF ECONOMIC POLICY, please contact Korea Development Institute, P.O. Box 113, Chongnyang, Seoul, Korea
Fax : (961) 5092. Tel : (958) 4114
본점 編輯委員會는 本誌에 발표된 論文과 本院에서 발간된 華行本 및 各種 報告書에 대한 院内外 専門家들의 論評과 書評의 寄稿을 기다리고 있습니다.

研究主題 및 그 內容과 관련되는 研究方法論 또는 國家政策上의 爭點을 表出시켜 앞으론의 研究課題와 政策方案 設定에 寄與하고, 아울러 實質的이고 建設的인 批判과 討論의 習慣을 造成하는는 趣旨에서 아래와 같은 要領으로 寄稿을 모집하고 있습니다. 讀者 여러분의 様은 參與를 바랍니다.

〉아 래〈

1. 寄稿분량：200자 寄稿기 欄 20장 안팎(PC로 작성한 寄稿 는 결장에 200자 寄稿기 欄 총분량을 표시할 것)
2. 寄稿내용：論評은 優當 논문에 담긴 誤謬 혹은 爭點을 내용으로 하여 가급적이면 論文이 발표된 후 3개월 이내로, 書評은 優當 보고서의 主要內容 紹介, 寄與度 및 問題點 評價, 그 리고 앞으론의 研究課題 提示를 내용으로 하여 優當적으로 보고서가 발간된 후 6개월 이내로 작성하여 주지기 바람.
3. 제출 처： 우선 또는 인연으로『KDI 政策研究』編輯委員長 에게 제출하여 주지기 바람.
4. 기 타： 제출된 寄稿는 本院이 정한 審查程序를 거쳐 신 게되며, 제택된 寄稿는 稿料을 드립.
<table>
<thead>
<tr>
<th>卷</th>
<th>内容</th>
<th>作者</th>
</tr>
</thead>
<tbody>
<tr>
<td>71-01</td>
<td>企業整理에 대한 의견</td>
<td>金滿堤</td>
</tr>
<tr>
<td>71-02</td>
<td>金利引下的可能性</td>
<td>金滿堤</td>
</tr>
<tr>
<td>71-03</td>
<td>農業開發戰略과 米穀需給政策의 評價</td>
<td>金滿堤</td>
</tr>
<tr>
<td>72-01</td>
<td>總資源預算을 위한 成長戰略(1972～73年)</td>
<td>KDI</td>
</tr>
<tr>
<td>72-02</td>
<td>新政策의 選擇을 위한 決斷</td>
<td>金滿堤</td>
</tr>
<tr>
<td>72-03</td>
<td>1973年度 應算規模의 計測</td>
<td>朴宗 Dich</td>
</tr>
<tr>
<td>72-04</td>
<td>開館紀念 심포지움 發表論文集</td>
<td>KDI</td>
</tr>
<tr>
<td>72-05</td>
<td>韓國經濟 安定化를 위한 提言</td>
<td>下村治</td>
</tr>
<tr>
<td>72-06</td>
<td>成長과 安定政策에 관한 研究</td>
<td>KDI</td>
</tr>
<tr>
<td>72-07</td>
<td>長短期計劃을 위한 諸模型(簡別)</td>
<td>金榮奉外</td>
</tr>
<tr>
<td>73-01</td>
<td>主要原資材에 대한 國際市場 分析과 價格展望</td>
<td>KDI</td>
</tr>
<tr>
<td>73-02</td>
<td>社會保障年金制度를 위한 方案</td>
<td>朴宗 Dich</td>
</tr>
<tr>
<td>73-03</td>
<td>韓國經濟의 產業聯關分析</td>
<td>宋丙洛</td>
</tr>
<tr>
<td>73-04</td>
<td>主要穀物의 國際需給事情과 價格動向</td>
<td>KDI</td>
</tr>
<tr>
<td>73-05</td>
<td>我國教育投資의 經濟的 價值分析</td>
<td>南祔鉉</td>
</tr>
<tr>
<td>73-06</td>
<td>我國交通計劃과 政策</td>
<td>鄭暢泳</td>
</tr>
<tr>
<td>73-07</td>
<td>政府 主要農產物 儲蓄事業效果分析</td>
<td>宋丙洛</td>
</tr>
<tr>
<td>74-01</td>
<td>輸出 100億日圓目標の 欧洲市場展望</td>
<td>洪元卓外</td>
</tr>
<tr>
<td>74-02</td>
<td>重化學工業推進을 위한 國家株資社會의 活用方案</td>
<td>司空壹外</td>
</tr>
<tr>
<td>74-03</td>
<td>公企業 任員の 社會的 背景</td>
<td>俞 晃</td>
</tr>
<tr>
<td>75-01</td>
<td>論算制度 改善에 관한 研究</td>
<td>金 迪敟</td>
</tr>
<tr>
<td>75-02</td>
<td>서울市內 生産 및 所得推計(1973)</td>
<td>金大泳</td>
</tr>
<tr>
<td>75-03</td>
<td>我國商品輸出의 長期展望(1973～81)</td>
<td>宋熙季外</td>
</tr>
<tr>
<td>제호</td>
<td>제목</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>75-04</td>
<td>우리나라 교육의 필요성 및 경제성장 쟁점 및 특성</td>
<td>염용수</td>
</tr>
<tr>
<td>75-05</td>
<td>우리나라 인구의 추정 (1960~2040)</td>
<td>김대성</td>
</tr>
<tr>
<td>75-06</td>
<td>철강시장의 전망 및 예측 모델</td>
<td>김성섭</td>
</tr>
<tr>
<td>75-07</td>
<td>철강산업의 시장 및 장기 전망</td>
<td>김성섭</td>
</tr>
<tr>
<td>75-08</td>
<td>서울시내 생산 및 시민분배의 필요성</td>
<td>김대성</td>
</tr>
<tr>
<td>75-09</td>
<td>한국제조업의 금융차관 및 보험</td>
<td>김성섭</td>
</tr>
<tr>
<td>75-10</td>
<td>한국 전통의 공간 경제적 분석</td>
<td>김성섭</td>
</tr>
<tr>
<td>75-11</td>
<td>한국 에너지 산업의 수요 및 예측</td>
<td>김성섭</td>
</tr>
<tr>
<td>75-12</td>
<td>우리나라 소비구조의 추정 (1977~86)</td>
<td>김성섭</td>
</tr>
<tr>
<td>75-13</td>
<td>국외의 수요 및 수출 특성</td>
<td>김성섭</td>
</tr>
<tr>
<td>75-14</td>
<td>제조업의 성장 과정 및 생산 구조</td>
<td>김성섭</td>
</tr>
<tr>
<td>76-01</td>
<td>우리나라는 인구 운동의 특징 (1965~70)</td>
<td>김대성</td>
</tr>
<tr>
<td>76-02</td>
<td>긴기일의 및 수요 및 수출 특성</td>
<td>김성섭</td>
</tr>
<tr>
<td>76-03</td>
<td>서울시내 생산 및 시민분배의 필요성</td>
<td>김성섭</td>
</tr>
<tr>
<td>77-01</td>
<td>농가의 수요 및 수출 특성</td>
<td>노무현</td>
</tr>
<tr>
<td>77-02</td>
<td>IBRD 중급도의 경제 및 사회적 평가</td>
<td>노무현</td>
</tr>
<tr>
<td>78-01</td>
<td>1968~73년 한국의 산업 및 생산성 산업</td>
<td>노무현</td>
</tr>
<tr>
<td>78-02</td>
<td>합성산업의 성장</td>
<td>노무현</td>
</tr>
<tr>
<td>79-01</td>
<td>우리나라 제조업의 성장 및 생산성 (1966~75)</td>
<td>김성섭</td>
</tr>
<tr>
<td>79-02</td>
<td>운송장비의 수요 및 수출 특성</td>
<td>김성섭</td>
</tr>
<tr>
<td>79-03</td>
<td>한국의 수출 및 수입 특성</td>
<td>김성섭</td>
</tr>
<tr>
<td>79-04</td>
<td>소화성 산업의 수요 및 수출 특성</td>
<td>김성섭</td>
</tr>
<tr>
<td>79-05</td>
<td>해외 수출 및 수입 특성</td>
<td>김성섭</td>
</tr>
<tr>
<td>79-06</td>
<td>한국 기계업의 수요 및 수출 특성</td>
<td>김성섭</td>
</tr>
<tr>
<td>79-07</td>
<td>한국의 경제의 성장 및 생산성</td>
<td>김성섭</td>
</tr>
<tr>
<td>79-08</td>
<td>한국의 경제의 성장 및 생산성</td>
<td>김성섭</td>
</tr>
</tbody>
</table>
第79-09卷 韓國의輸入構造 및 輸入政策 徐錫泰
第80-01卷 水資源・工業園地造成部門의投資事業審査分析 林栽煥
第80-02卷 인플레와企業成長能力 張榮光
第80-03卷 農業機械化의政策課題 文八龍
第80-04卷 産業別投入係數의變化와推定 金圭洙
第80-05卷 韓國의自動車工業 李徹熙
第80-06卷 農業機械化의投資效果分析 林栽煥
第81-01卷 社會保障制度改善을 위한研究報告書 朴宗淇 外
第81-02卷 韓國金屬工業의展望과政策課題 南宗鉉 編
第81-03卷 自動車工業의發展方向과政策 金榮奉
第81-04卷 福祉社會의人力政策과職業安定 金秀坤 外
第81-05卷 固廃棄物管理現況과改善方案 鄭文植
第81-06卷 5次計劃을 위한 都市化問題의研究 宋丙洛
第81-07卷 韓國製造業의產業集中分析 李奎億 徐錫敎
第81-08卷 農業信用事業의經濟性分析 林栽煥
第81-09卷 韓國資本主義經濟體制發展을 위한研究 黃秉泰
第81-10卷 韓國의產業誘因政策과産業別保護構造分析 南宗鉉
第81-11卷 對外去自由化와韓國經濟 金重雄
第81-12卷 景氣綜合指數作成에관한研究報告書 徐相穆 編
第81-13卷 貧困의實態와 零細民對策 徐相穆 外
第82-01卷 糧政轉換을 위한食糧安保備蓄制度 柳炳瑞
第82-02卷 名目 및實效保護率構造의長期的變化 金光錫 洪性德
第82-03卷 韓國製造業의産業別生産構造 金載元
第82-04卷 勞使關係事例研究 金秀坤 外
第82-05卷 國家預算과政策目標(1982年度) 朴宗淇 編
第82-06卷 1960~77年韓國產業資本스톡推計 朱鶴中 外
<table>
<thead>
<tr>
<th>No.</th>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>82-07</td>
<td>82-08</td>
<td>農外所得增大물 위한綜合対策</td>
<td>柳炳瑞外</td>
</tr>
<tr>
<td>82-09</td>
<td>83-01</td>
<td>醫療保險의政策課題와发展方向</td>
<td>延河清外</td>
</tr>
<tr>
<td>82-09</td>
<td>83-02</td>
<td>世界經濟環境變化와當面課題</td>
<td>金重雄</td>
</tr>
<tr>
<td>83-03</td>
<td>83-03</td>
<td>勞使關係政策課題의方向</td>
<td>金秀坤編</td>
</tr>
<tr>
<td>83-04</td>
<td>83-04</td>
<td>80年代勞使關係發展을 위한懇談會報告書</td>
<td>KDI</td>
</tr>
<tr>
<td>83-05</td>
<td>83-06</td>
<td>労使協議制研究</td>
<td>朴世逸外</td>
</tr>
<tr>
<td>83-06</td>
<td>83-07</td>
<td>都給組織의現況 및都給去來의增進方案</td>
<td>金載元</td>
</tr>
<tr>
<td>83-07</td>
<td>83-08</td>
<td>國家預算과政策目標(1983年度)</td>
<td>崔洸編</td>
</tr>
<tr>
<td>83-08</td>
<td>83-09</td>
<td>短期金融市場의當面課題와发展方向</td>
<td>李德勳</td>
</tr>
<tr>
<td>83-09</td>
<td>83-10</td>
<td>經濟安定化政策과企業經營의改善</td>
<td>洪炳裕</td>
</tr>
<tr>
<td>84-01</td>
<td>84-02</td>
<td>韓國稅制의政策課題와改善方向</td>
<td>崔洸編</td>
</tr>
<tr>
<td>84-02</td>
<td>84-03</td>
<td>退職金制度의問題點과改善方向</td>
<td>閔載成外</td>
</tr>
<tr>
<td>84-03</td>
<td>84-04</td>
<td>國家預算과政策目標(1984年度)</td>
<td>金重雄編</td>
</tr>
<tr>
<td>84-04</td>
<td>84-05</td>
<td>金融國際化의當面課題와政策方向</td>
<td>金重雄外</td>
</tr>
<tr>
<td>84-05</td>
<td>84-06</td>
<td>인플레이期待와經濟安定</td>
<td>李啓植</td>
</tr>
<tr>
<td>84-06</td>
<td>85-01</td>
<td>產業高度化에 따른農業構造의改編方向</td>
<td>李奎億外</td>
</tr>
<tr>
<td>85-01</td>
<td>85-02</td>
<td>產業結合과經濟力集中</td>
<td>宋大煥柳炳瑞</td>
</tr>
<tr>
<td>85-02</td>
<td>85-03</td>
<td>乘法季節ARIMA模型의構造識別方法</td>
<td>呂運邦孫英淑</td>
</tr>
<tr>
<td>85-03</td>
<td>85-04</td>
<td>海外先物市場의活用方案</td>
<td>李煥外</td>
</tr>
<tr>
<td>85-04</td>
<td>85-05</td>
<td>減價償還制度와資本所得課税</td>
<td>郭泰元</td>
</tr>
<tr>
<td>85-05</td>
<td>85-06</td>
<td>第二金融圈의發展과業務領域調整</td>
<td>李德勳</td>
</tr>
<tr>
<td>85-06</td>
<td>85-07</td>
<td>國家預算과政策目標(1985年度)</td>
<td>李啓植編</td>
</tr>
<tr>
<td>85-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>卷号</td>
<td>标题</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第85-08卷</td>
<td>特許制度의 経済的 效果分析</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第86-01卷</td>
<td>租税政策과 稅制發展</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第86-02卷</td>
<td>金融產業發展에 관한 研究, 1985～2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第86-03卷</td>
<td>私學運営의 課題와 改善方案</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第86-04卷</td>
<td>國家預算과 政策目標(1986年度)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第86-05卷</td>
<td>國民年金制度의 基本構想과 経済社會 波及效果</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第86-06卷</td>
<td>Social Development in Action</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第86-07卷</td>
<td>Financial Development Policies and Issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第86-08卷</td>
<td>Industrial Development Policies and Issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第86-09卷</td>
<td>證券市場의 發達과 機関投資家의 役割</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第87-01卷</td>
<td>商品去來所의 設立에 관련 研究</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第87-02卷</td>
<td>公企業經營評価의 理論的 背景과 技法</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第87-03卷</td>
<td>我国金融 銀行金融政策運営現況과 改善方案</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第87-04卷</td>
<td>Macroeconomic Policy and Industrial Development Issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第87-05卷</td>
<td>Human Resources and Social Development Issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第87-06卷</td>
<td>國家預算과 政策目標(1987年度)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第87-07卷</td>
<td>エネルギー部門의 政策課題와 改善方案</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第87-08卷</td>
<td>住宅金融의 現況과 発展方向</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第87-09卷</td>
<td>地方工業의 特性와 育成政策</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第88-01卷</td>
<td>公企業의 民營化에 관한 研究</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第88-02卷</td>
<td>社會保障制度의 政策課題와 発展方向</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第88-03卷</td>
<td>金融先物と 貿易市場의 活用方案</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第88-04卷</td>
<td>社會福祉傳達體系의 改善과 専門人力活用方案</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第88-05卷</td>
<td>國家預算과 政策目標(1988年度)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第88-06卷</td>
<td>日本經済社會의 進化와 韓日貿易</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第88-07卷 輸入自由化の 経済的 效果と 産業調整政策 金光錫
第89-01卷 リス産業の 発展案 李炳外
第89-02卷 研究開発と 市場構造及び 生産性 金道鈞
第89-03卷 産業技術開発支援政策の 現況と 改善案 鄭俊石
第89-04卷 國家報酬報償制度の 改編案 李奎億
第89-05卷 経済規制と 競争政策 李奎億
第89-06卷 國家預算と 政策目標(1989年度) 沈相達
第89-07卷 金融環境変化と 綜合金融機関の 位相 南相聖
第89-08卷 経済の 國際化と 中小企業の 産業調整 朴埈卿
第90-01卷 稅収推計 模型開発の 機制 研究 盧基星
第90-02卷 韓国の 歓喜 賞金 張鉸俊
第90-03卷 地方公企業の 課題と 発展方向 宋大熙
第90-04卷 企業集団と 経済力集中 李奎億
第90-05卷 醫療保険制度の 改善を する 政策案 鄭純源
第90-06卷 證券産業の 発展を する 研究 李永燌
第90-07卷 地域開発と 地方財政 李啓植
第90-08卷 韓国の 退職金制度と 企業年金制度 導入案 廖載成
第90-09卷 中小企業の 福利厚生分配と 政策課題 延河浩
第90-10卷 中小企業の 産業構造と 中小企業支援施策の 改善方向 姜文秀
第90-11卷 経済規制と 競争政策(2) 李奎億
第90-12卷 國家預算と 政策目標(1990年度) 宋大熙
第90-13卷 経済成長と 巨視経済運用 朴元巖
第90-14卷 國民年金財政の 安定化を する 政策課題と 方向 南相聖
第91-01卷 開放化と 下層給与制度の 改編 金周勳
第91-02卷 経済研究(1) 李奎億
우루파이라운드의 規律分野協商과
產業・貿易政策의 改善方向
地方自治制 實施에 따른 中央・地方財政機能의
再定立
廣告의 產業組織과 規制
舊東獨의 私有化方案 및 失業對策
構造變化와 麥庈問題
製造業의 總要素生產性動向과 그 決定要因
國家豫算과 政策目標(1992年度)
韓國經濟의 產業貿易模型
國內銀行의 經營效率性 比較分析
產業保護의 誘因體系의 歪曲
國家豫算과 政策目標(1993年度)
韓國의 老齡化 推移과 老人福祉對策
低所得層의 生活安定과 自立對策
地域金融의 活性化와 新世代金融의 發展
產災保險 財政運営方式 開發에 관한 研究
美日構造調整協議의 展開와 競爭政策
國際化時代의 韓國經濟運営
國家豫算과 政策目標(1994年度)
外國人直接投資의 投資政策
 우리나라 自動車產業의 當面課題과 產業組織政策
競爭政策의 國際比較：美國・日本・獨逸
第95-01卷 金融自律化에 따른 生命保険産業의 對應方案 羅東 敏
第95-02卷 韓・臺・日의 輸入依存構造比較 呂正 高
第95-03卷 法經濟研究(II) 李奎 優 外
第95-04卷 國際化時代의 金融制度 崔範 樹 李炯 周
第95-05卷 北韓의 外國人投資制度의 對北投資 推進方案 全洪 澤 外
第95-06卷 調達市場의 效率化・開放化 方案 南逸 聰 外
第95-07卷 國民年金制度의 財政健全化를 위한 構造改善 方案 文亨 村
第95-08卷 韓國教育財政의 現況과 改革方向 尹建 永

第96-01卷 OECD加入과 資本自由化 朴元 堅
第96-02卷 金融의 效率性提高와 金融規制 緩和 姜文 秀 外
第96-03卷 金融自由化와 金融監督 姜文 秀
第96-04卷 製造業 總要素生産性의 長期의 變化 洪性 德 金政 錫
第96-05卷 北韓의 經濟特區 朴貞 東
第96-06卷 金融의 汎世界化와 證券産業의 構造改編 李德 勳 崔範 樹
第96-07卷 南北韓 經濟統合時의 經濟・社會 安定化 對策 朴進
第96-08卷 中小企業의 構造調整과 知識集約化 金周 勳
第96-09卷 韓國 物價變動構造의 分析과 政策對應 朴佑 奎 外
第96-10卷 雇傭政策과 人的資源開發 李周 浩
第96-11卷 地域利己主義의 經濟의 理解와 效率的 葛藤調整 方案 金在 亨
第96-12卷 經済世界化時代의 巨視経済運營 左承 喜 編
第96-13卷 與信專門金融産業의 特性과 發展方案 李德 勳 外
第96-14卷 中小・ベン처企業의 發展과 場外市場의 活性化 崔範 樹 李基 翔
第96-15卷 中央・地方政府間 關係 및 財源調整 李啓 椭 外
第96-16卷 業界統合 皆願가의 労動政策 조동 奇
第96-17卷 地方化時代의 政策課題와 制度改善方向 盧基 星 編
第97-01卷 社會間接資本施設에 대한 民資誘致制度의 改善方向
盛基星 鄭源浩

第97-02卷 產業構造의 長期變化와 中小企業의 發展方向 朴埈卿
新刊案內

金融産業의 특성과 發展方案
半洋裝/A5新/192쪽/定價 7,000원 / 李德勳

経済産業的 傳承기의 労働政策
半洋裝/A5新/230쪽/定價 8,000원 / 崔동호

地域利己主義의 經濟的 理解와 效率的 葛藤調整方案
半洋裝/A5新/168쪽/定價 8,000원 / 金在亨

1996년 韓國經済의 主要懸案과 政策對應
半洋裝/B5/200쪽/定價 6,000원 / 韓國開發研究院

地方化 時代의 政策課題와 制度改善 方向
半洋裝/A5新/226쪽/定價 8,000원 / 朴基星

社會間接資本施設에 대한 民資誘致制度의 改善方向
半洋裝/A5新/148쪽/定價 6,000원 / 金基星

한반도 통일시의 経済統合전략
半洋裝/A5新/580쪽/定價 20,000원 / 金明浩

열린 市場経済로 가기 위한 國家課題
半洋裝/A5新/300쪽/定價 6,000원 / 財政經濟研

Accounting for Rapid Economic Growth in Korea, 1963-1995
半洋裝/B5/200쪽/定價 9,000원 / 南明浩

産業構造의 長期變化와 中小企業의 發展方向
半洋裝/A5新/230쪽/定價 8,000원 / 朴　煥

南北経済統合의 新の 接近方法
半洋裝/A5新/456쪽/定價 15,000원 / 高　東平
KDI 圖書會員制 案內

■ 會員에 대한 特典
 - 會員加入期間(1년)중 本 研究院이 발간하는 모든 刊行物을
 우송해 드립. (단, 自體資料 및 配布制限資料는 제외)
■ 會 費：100,000원
■ 加入方法:
 - 直接 本院 發刊資料相談室에 편리한 납입기간이나,
 - 가까운 우체국의 本院 우편대체계좌
 (계좌번호：010983-31-0514919)에 납입하면 됨.
■ 問議處
 서울특별시 동대문구 청량리동 207의 41 우편번호：130-012
KDI 발간자료상담실(Tel. 958/4326~8)

KDI 圖書 販賣處

- 서울：교보문고(정부간행물코너) Tel. 397-3628
 종로서적(3층 社会관) Tel. 733-2331
 영풍문고(정부간행물코너) Tel. 399-5632
- 부산：영광도서(정부간행물코너) Tel. 816-9500
- 대구：학원서림(1층 2매장) Tel. 425-0050